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Higher-order moments




Support recovery from moments

» Random variable X, supported on k distinct points
21,22,...,2Zk € R,

]P(X:Zt) = Wt>0.

> How to learn parameters {(w;, z;)}5_;?
» Relatively straightforward given iid sample.
» Statistical query model:

» Don't have iid sample, but instead can get (or estimate)
E(f(X)) for some simple functions f, e.g., f(x) = x°.

» Can we still learn parameters? What f to use?

» Prony’s method: uses functions f(x) = xP for p € N.

Prony's method (1795)

> pp = E(XP) = 2K | wizf (p-th moment of X)
» Use moments up to order p = 2k — 1.

» There are 2k — 1 parameters to estimate.

» Arrange into k X k matrices G and H, where

Gij = pitj—2, Hij = piyj-1;

called “Hankel matrices”.




Hankel matrices of moments
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Matrix factorization of G
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Therefore
G=VvVWwWVv’

where
W = diag(wi,wp,...,wy) = 0

and V is a Vandermonde matrix
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whose determinant is

det(V) = [ (z—2z) # 0.

1<s<t<k




Matrix factorization of H

k k
Hij = pisjo1 = p wezy 770 = Y (zewe)zi 127
t=1 t=1
Therefore
H=VZWV'™
where

Z = diag(zl, Z2,. .. ,Zk)
and W and V are as before.

Prony’s method (finally)
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(Not exactly Prony’s method, but similar.)
Form G and H using moments of orders 0 < p < 2k — 1.

» Recal G= VWV and H=VZWV'.

Compute HG 1.
» HG ' = (vZwVvT)(vwVv )t =vzv!

v

v

» Compute eigenvalues of HG™ L.

» VZVlis diagonalizable; eigenvalues are z1, z, . . ., zk.
> Get {z:}*_; (in some arbitrary order).

» Form V (up to permutation of columns); compute V-1GV ™.

» This equals W (up to same permutation).
» Can read out {w;}*_, from diagonal entries, match with z's.




Learning convex polytopes (Gravin et al, 2011)

» Convex polytope P C RY with vertices Z := {z;}¢_; € RY.
» Assume P is simple:
» Every vertex z; is incident on d edges, i.e., has d neighboring
vertices 2V, 22 . 2\ € Z such that {2\ — z,}9 | are
linearly independent.

» Suppose X ~ Uniform(P). Can we learn the vertices Z7

Algorithm based on Prony’'s method

» For any u € sd-1

k
E(u, X)P = cpq- Z D:(u) - (u,zt>p+d
t=1

where ¢, 4 > 0 is some constant depending only on p and d,

K
Di(u) = — 1B
[T (u, 2" — z¢)
and
K: = zgl)—zt | z§2)—zt |- |zgd)—zt

» Can use Prony's method to learn {(u, z;)}&_;.
» Do this for d different u's to reconstruct {z,}x_;.




Higher-order moments

» Moments provide constraints on parameters:

» Prony’s method: use moments up to order 2k — 1 to solve for
2k — 1 unknowns.

» Convex polytope learning: use moments up to order 2k — 1
(d times) to solve for dk unknowns.

» Variance of high-order moments is high — can be difficult to
estimate accurately.
> But typically X in R? has Q(dP) mixed moments of order p.

» E.g., E(X2X;).
» Perhaps we can get away with moments of small order?

Multilinear functions and tensors




Motivation: Spearman’s hypothesis

» Spearman’s hypothesis: a student’s test score depends on

» how much test measures math and verbal abilities;
» student’s abilities in math and verbal.

» Model: score for student /i on test j given by
S(’?J) = Xmath(i) ‘Ymath(j) + Xverbal(i) : YVerbal(.j) .

> Xmath(7) and Xyerba1(7) are math and verbal abilities of student /
> Ymath(J) and Yyerba1(j) are math-iness and verbal-iness of test j

> Matrix equation (X = [Xmath | Xverball, ¥ = [Ymath | Yverball):
S = XY'.
» But why “math” and “verbal”?
S = (XR)(YR™ )T

for any 2 x 2 invertible matrix R.

Matrices

» Matrix M € R™*" as bilinear function M: R™ x R" — R.
» Linear in each argument:
M(cx +x',y) = cM(x,y) + M(X',y)
M(x,cy +y') = cM(x,y) + M(x,y')
» Formula using matrix represetation: M(x,y) = x" My.
> Using singular value decomposition M = Y71, oju;v; :
M(x,y) = 3 iz1 oi(ui, x)(vi, y)
» Forget about matrix representation. How to describe M?

> Pick any bases {e;}/"; for R and {f;}7_; for R"
» Describe M by m x n function values M(e;, f;).




p-linear functions

» T:RM xR x...x R%» 5 R

» Describe T by its behavior of basis elements, e.g.,

el .. {elPye,:

(1) (p)
T(e; N )
(n1 X ng X -+ X np function values.)

Like matrices, can arrange into multi-index array
T c Rnlxngxmxnp

Also called a p-th order tensor
» p=1: vector in R”
» p=2: matrix in R™*"

» We will usually just consider p = 3 for simplicity

v

“Formula” using multi-index array T € R™M*m2Xms3.

T(x,y,2) = > Tijuxiyjzk-
ij,k

Tensor norms

» Frobenius norm: || T || = \/m

» Operator (spectral) norm: || T |2 = max T(x,y,z)
esm—t,
yesmn,

zeSm—1
» Optimization problem is NP-hard for p > 3.

» In fact, most problems we take for granted as tractable

for matrices are NP-hard for tensors of order p > 3.




Rank

» Rank-1 tensor:

T(x,y,z) - <U,X><V, y><W,Z>

for some vectors u € R, v € R, w € R™,.

» Writeas T=u®vw
» Multi-index array: T;;x = ujvjwy
» Generalization of matrix “outer product” uv' = u® v

» Say rank(T) = smallest r € N such that T equals the sum of
r rank-1 tensors.

» Generalizes concept of matrix rank.

» Computing rank is NP-hard for p > 3.

Border rank

» Border rank of T: smallest r € N such that there exists a

sequence (T y)ken of rank r tensors such that klim T, =T
— 00

» In general, border rank not the same as rank.
» Example:

» Take any distinct u, v € S"=1 and define
T = uQuv4+uRveu+vuxu,

which has rank 3.
» Define

1 1
Ty = Z(u+ev)®(u—|—ev)®(u+ev)—Eu®u®u.

» Fore=1/k, have Iim T, =T.
k— 00




Uniqueness of decompositions

v
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Suppose vi,Vva,...,v, € R" are orthonormal.
O _ n _ n ®?2
Matrixx: M=% vi®Qv;=> Vv ".

» Cannot recover {v;}"_; just from M.

3rd-order tensor: T=3",v,®@viQv; =", v

i .
» Can recover {v;}" , just from T exactly!

Many general conditions imply uniqueness of higher-order
tensor decomposition.




