

Hankel matrices of moments

$$G := \begin{bmatrix} \mu_{0} & \mu_{1} & \cdots & \mu_{k-1} \\ \mu_{1} & \mu_{2} & \cdots & \mu_{k} \\ \vdots & \vdots & \ddots & \vdots \\ \mu_{k-1} & \mu_{k} & \cdots & \mu_{2k-2} \end{bmatrix}, \quad H := \begin{bmatrix} \mu_{1} & \mu_{2} & \cdots & \mu_{k} \\ \mu_{2} & \mu_{3} & \cdots & \mu_{k+1} \\ \vdots & \vdots & \ddots & \vdots \\ \mu_{k} & \mu_{k+1} & \cdots & \mu_{2k-1} \end{bmatrix}.$$
Matrix factorization of G
 $G_{i,j} = \mu_{i+j-2} = \sum_{t=1}^{k} w_{t} z_{t}^{i+j-2} = \sum_{t=1}^{k} w_{t} z_{t}^{i-1} z_{t}^{j-1}$
Therefore

 $\boldsymbol{G} = \boldsymbol{V} \boldsymbol{W} \boldsymbol{V}^{ op}$

where

$$\boldsymbol{W} \mathrel{\mathop:}= \operatorname{diag}(w_1, w_2, \ldots, w_k) \succ 0$$

and \boldsymbol{V} is a Vandermonde matrix

$$V_{i,t} := z_t^{i-1}$$

whose determinant is

$$\det(\boldsymbol{V}) = \prod_{1 \leq s < t \leq k} (z_s - z_t) \neq 0.$$

Matrix factorization of *H*

$$H_{i,j} = \mu_{i+j-1} = \sum_{t=1}^{k} w_t z_t^{i+j-1} = \sum_{t=1}^{k} (z_t w_t) z_t^{i-1} z_t^{j-1}$$

Therefore

$$\boldsymbol{H} = \boldsymbol{V}\boldsymbol{Z}\boldsymbol{W}\boldsymbol{V}^{\mathsf{T}}$$

where

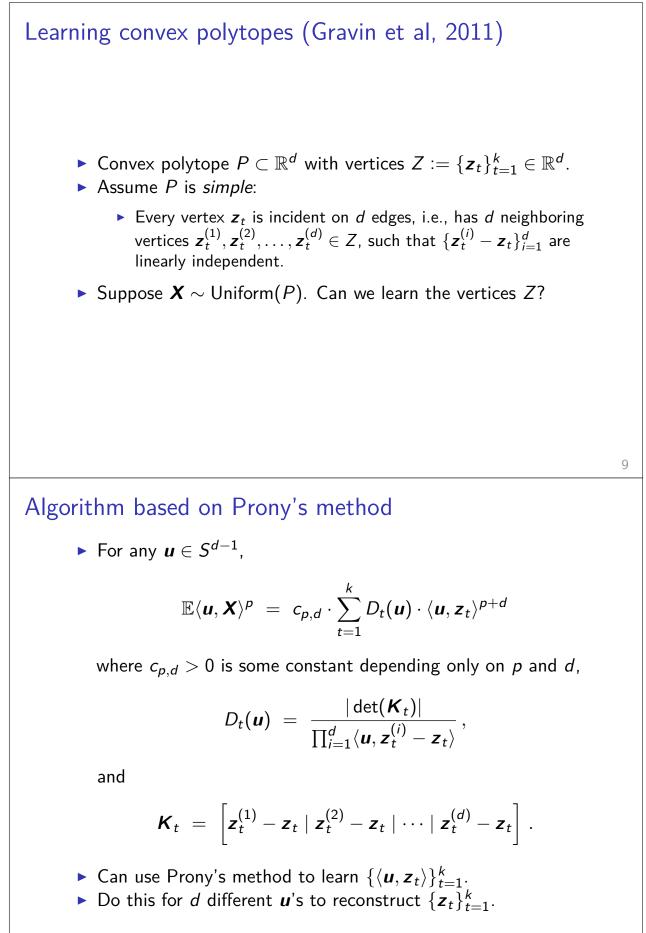
$$\boldsymbol{Z} := \operatorname{diag}(z_1, z_2, \ldots, z_k)$$

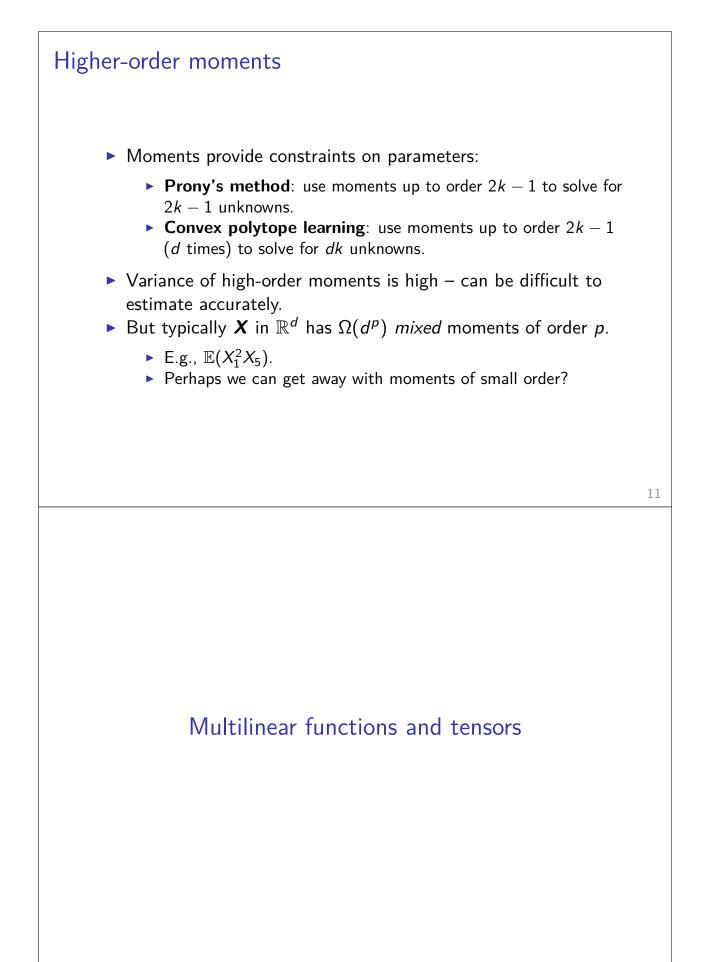
and \boldsymbol{W} and \boldsymbol{V} are as before.

Prony's method (finally)

- (Not exactly Prony's method, but similar.)
- Form **G** and **H** using moments of orders $0 \le p \le 2k 1$.
 - Recall $\boldsymbol{G} = \boldsymbol{V} \boldsymbol{W} \boldsymbol{V}^{\top}$ and $\boldsymbol{H} = \boldsymbol{V} \boldsymbol{Z} \boldsymbol{W} \boldsymbol{V}^{\top}$.
- ► Compute *HG*⁻¹.
 - $\blacktriangleright HG^{-1} = (VZWV^{\top})(VWV^{\top})^{-1} = VZV^{-1}.$
- ► Compute eigenvalues of **HG**⁻¹.
 - VZV^{-1} is diagonalizable; eigenvalues are z_1, z_2, \ldots, z_k .
 - Get $\{z_t\}_{t=1}^k$ (in some arbitrary order).
- ► Form \boldsymbol{V} (up to permutation of columns); compute $\boldsymbol{V}^{-1}\boldsymbol{G}\boldsymbol{V}^{-\top}$.
 - ► This equals **W** (up to *same* permutation).
 - Can read out $\{w_t\}_{t=1}^k$ from diagonal entries, match with z_t 's.

7





Motivation: Spearman's hypothesis Spearman's hypothesis: a student's test score depends on how much test measures math and verbal abilities; student's abilities in math and verbal. Model: score for student i on test j given by $S(i, j) := x_{\text{math}}(i) \cdot y_{\text{math}}(j) + x_{\text{verbal}}(i) \cdot y_{\text{verbal}}(j)$. • $x_{\text{math}}(i)$ and $x_{\text{verbal}}(i)$ are math and verbal abilities of student i • $y_{\text{math}}(j)$ and $y_{\text{verbal}}(j)$ are math-iness and verbal-iness of test j • Matrix equation ($\mathbf{X} = [\mathbf{x}_{math} \mid \mathbf{x}_{verbal}], \mathbf{Y} = [\mathbf{y}_{math} \mid \mathbf{y}_{verbal}]$): $S = XY^{\top}$. But why "math" and "verbal"? $\boldsymbol{S} = (\boldsymbol{X}\boldsymbol{R})(\boldsymbol{Y}\boldsymbol{R}^{-\top})^{\top}$ for any 2×2 invertible matrix **R**. 13 **Matrices** • Matrix $\mathbf{M} \in \mathbb{R}^{m \times n}$ as bilinear function $\mathbf{M} \colon \mathbb{R}^m \times \mathbb{R}^n \to \mathbb{R}$. Linear in each argument: $\boldsymbol{M}(\boldsymbol{c}\boldsymbol{x}+\boldsymbol{x}',\boldsymbol{y})=\boldsymbol{c}\boldsymbol{M}(\boldsymbol{x},\boldsymbol{y})+\boldsymbol{M}(\boldsymbol{x}',\boldsymbol{y})$ $\boldsymbol{M}(\boldsymbol{x}, \boldsymbol{c}\boldsymbol{y} + \boldsymbol{y}') = \boldsymbol{c}\boldsymbol{M}(\boldsymbol{x}, \boldsymbol{y}) + \boldsymbol{M}(\boldsymbol{x}, \boldsymbol{y}')$ • Formula using matrix represetation: $M(x, y) = x^{\top} M y$. • Using singular value decomposition $\boldsymbol{M} = \sum_{i=1}^{r} \sigma_i \boldsymbol{u}_i \boldsymbol{v}_i^{\mathsf{T}}$: $\boldsymbol{M}(\boldsymbol{x}, \boldsymbol{y}) = \sum_{i=1}^{r} \sigma_i \langle \boldsymbol{u}_i, \boldsymbol{x} \rangle \langle \boldsymbol{v}_i, \boldsymbol{y} \rangle$ ► Forget about matrix representation. How to describe *M*? • Pick any bases $\{\boldsymbol{e}_i\}_{i=1}^m$ for \mathbb{R}^m and $\{\boldsymbol{f}_j\}_{j=1}^n$ for \mathbb{R}^n • Describe **M** by $m \times n$ function values $\dot{\mathbf{M}}(\mathbf{e}_i, \mathbf{f}_i)$.

p-linear functions $T: \mathbb{R}^{n_1} \times \mathbb{R}^{n_2} \times \cdots \times \mathbb{R}^{n_p} \to \mathbb{R}$ Describe T by its behavior of basis elements, e.g., $\{\boldsymbol{e}_{i}^{(1)}\}_{i=1}^{n_{1}},\ldots,\{\boldsymbol{e}_{i}^{(p)}\}_{i=1}^{n_{p}}$: $T(e_{i_1}^{(1)},\ldots,e_{i_p}^{(p)})$ $(n_1 \times n_2 \times \cdots \times n_p \text{ function values.})$ Like matrices, can arrange into multi-index array $\boldsymbol{T} \in \mathbb{R}^{n_1 \times n_2 \times \cdots \times n_p}$ Also called a p-th order tensor \triangleright p = 1: vector in \mathbb{R}^n • p = 2: matrix in $\mathbb{R}^{m \times n}$ • We will usually just consider p = 3 for simplicity "Formula" using multi-index array $\boldsymbol{T} \in \mathbb{R}^{n_1 imes n_2 imes n_3}$: $\mathbf{T}(\mathbf{x},\mathbf{y},\mathbf{z}) = \sum_{i,j,k} T_{i,j,k} x_i y_j z_k.$ Tensor norms Frobenius norm: $\|\boldsymbol{T}\|_F = \sqrt{\sum_{i,j,k} T_{i,j,k}^2}$ • Operator (spectral) norm: $\|\boldsymbol{T}\|_2 = \max_{\substack{\boldsymbol{x} \in S^{n_1-1}, \\ \boldsymbol{y} \in S^{n_2-1}, }} \boldsymbol{T}(\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{z})$ $z \in S^{n_3-1}$ • Optimization problem is NP-hard for p > 3. In fact, most problems we take for granted as tractable for matrices are NP-hard for tensors of order $p \ge 3$.

15

Rank Rank-1 tensor: $T(x, y, z) = \langle u, x \rangle \langle v, y \rangle \langle w, z \rangle$ for some vectors $\boldsymbol{u} \in \mathbb{R}^{n_1}$, $\boldsymbol{v} \in \mathbb{R}^{n_2}$, $\boldsymbol{w} \in \mathbb{R}^{n_3}$. • Write as $T = u \otimes v \otimes w$ • Multi-index array: $T_{i,i,k} = u_i v_i w_k$ • Generalization of matrix "outer product" $\boldsymbol{u}\boldsymbol{v}^{\top} \equiv \boldsymbol{u}\otimes\boldsymbol{v}$ Say rank(T) = smallest $r \in \mathbb{N}$ such that T equals the sum of r rank-1 tensors. Generalizes concept of matrix rank. • Computing rank is NP-hard for $p \geq 3$. 17 Border rank **•** Border rank of T: smallest $r \in \mathbb{N}$ such that there exists a sequence $(\boldsymbol{T}_k)_{k\in\mathbb{N}}$ of rank r tensors such that $\lim_{k\to\infty} \boldsymbol{T}_k = \boldsymbol{T}$ In general, border rank not the same as rank. Example: • Take any distinct $\boldsymbol{u}, \boldsymbol{v} \in S^{n-1}$, and define $T := u \otimes u \otimes v + u \otimes v \otimes u + v \otimes u \otimes u,$ which has rank 3. Define $T_{1/\epsilon} := \frac{1}{\epsilon} (u + \epsilon v) \otimes (u + \epsilon v) \otimes (u + \epsilon v) - \frac{1}{\epsilon} u \otimes u \otimes u.$ • For $\epsilon = 1/k$, have $\lim_{k \to \infty} T_k = T$.

