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Higher-order moments
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Support recovery from moments

I Random variable X , supported on k distinct points
z1, z2, . . . , zk ∈ R,

P(X = zt) = wt > 0 .

I How to learn parameters {(wt , zt)}kt=1?
I Relatively straightforward given iid sample.

I Statistical query model:
I Don’t have iid sample, but instead can get (or estimate)

E(f (X )) for some simple functions f , e.g., f (x) = x2.
I Can we still learn parameters? What f to use?
I Prony’s method: uses functions f (x) = xp for p ∈ N.
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Prony’s method (1795)

I µp := E(Xp) = ∑k
t=1 wtzp

t (p-th moment of X )
I Use moments up to order p = 2k − 1.

I There are 2k − 1 parameters to estimate.
I Arrange into k × k matrices G and H, where

Gi ,j := µi+j−2 , Hi ,j := µi+j−1 ;

called “Hankel matrices”.
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Hankel matrices of moments

G :=




µ0 µ1 · · · µk−1
µ1 µ2 · · · µk
... ... . . . ...

µk−1 µk · · · µ2k−2



, H :=




µ1 µ2 · · · µk
µ2 µ3 · · · µk+1
... ... . . . ...
µk µk+1 · · · µ2k−1



.
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Matrix factorization of G

Gi ,j = µi+j−2 =
k∑

t=1
wtz i+j−2

t =
k∑

t=1
wtz i−1

t z j−1
t

Therefore
G = V W V>

where
W := diag(w1,w2, . . . ,wk) � 0

and V is a Vandermonde matrix

Vi ,t := z i−1
t

whose determinant is

det(V ) =
∏

1≤s<t≤k
(zs − zt) 6= 0 .
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Matrix factorization of H

Hi ,j = µi+j−1 =
k∑

t=1
wtz i+j−1

t =
k∑

t=1
(ztwt)z i−1

t z j−1
t

Therefore
H = V ZW V>

where
Z := diag(z1, z2, . . . , zk)

and W and V are as before.
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Prony’s method (finally)

I (Not exactly Prony’s method, but similar.)
I Form G and H using moments of orders 0 ≤ p ≤ 2k − 1.

I Recall G = V W V > and H = V ZW V >.
I Compute HG−1.

I HG−1 = (V ZW V >)(V W V >)−1 = V ZV−1.
I Compute eigenvalues of HG−1.

I V ZV−1 is diagonalizable; eigenvalues are z1, z2, . . . , zk .
I Get {zt}k

t=1 (in some arbitrary order).
I Form V (up to permutation of columns); compute V−1GV−>.

I This equals W (up to same permutation).
I Can read out {wt}k

t=1 from diagonal entries, match with zt ’s.
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Learning convex polytopes (Gravin et al, 2011)

I Convex polytope P ⊂ Rd with vertices Z := {zt}kt=1 ∈ Rd .
I Assume P is simple:

I Every vertex zt is incident on d edges, i.e., has d neighboring
vertices z(1)

t , z(2)
t , . . . , z(d)

t ∈ Z , such that {z(i)
t − zt}d

i=1 are
linearly independent.

I Suppose X ∼ Uniform(P). Can we learn the vertices Z?
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Algorithm based on Prony’s method
I For any u ∈ Sd−1,

E〈u,X〉p = cp,d ·
k∑

t=1
Dt(u) · 〈u, zt〉p+d

where cp,d > 0 is some constant depending only on p and d ,

Dt(u) = | det(K t)|
∏d

i=1〈u, z
(i)
t − zt〉

,

and

K t =
[
z(1)

t − zt | z(2)
t − zt | · · · | z(d)

t − zt

]
.

I Can use Prony’s method to learn {〈u, zt〉}kt=1.
I Do this for d different u’s to reconstruct {zt}kt=1.
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Higher-order moments

I Moments provide constraints on parameters:
I Prony’s method: use moments up to order 2k − 1 to solve for

2k − 1 unknowns.
I Convex polytope learning: use moments up to order 2k − 1

(d times) to solve for dk unknowns.
I Variance of high-order moments is high – can be difficult to

estimate accurately.
I But typically X in Rd has Ω(dp) mixed moments of order p.

I E.g., E(X 2
1 X5).

I Perhaps we can get away with moments of small order?
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Multilinear functions and tensors

12



Motivation: Spearman’s hypothesis
I Spearman’s hypothesis: a student’s test score depends on

I how much test measures math and verbal abilities;
I student’s abilities in math and verbal.

I Model: score for student i on test j given by

S(i , j) := xmath(i) · ymath(j) + xverbal(i) · yverbal(j) .

I xmath(i) and xverbal(i) are math and verbal abilities of student i
I ymath(j) and yverbal(j) are math-iness and verbal-iness of test j

I Matrix equation (X = [xmath | xverbal], Y = [ymath | yverbal]):

S = XY> .

I But why “math” and “verbal”?

S = (XR)(Y R−>)>

for any 2× 2 invertible matrix R.
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Matrices

I Matrix M ∈ Rm×n as bilinear function M : Rm × Rn → R.
I Linear in each argument:

M(cx + x ′, y) = cM(x, y) + M(x ′, y)
M(x, cy + y ′) = cM(x, y) + M(x, y ′)

I Formula using matrix represetation: M(x, y) = x>My .
I Using singular value decomposition M = ∑r

i=1 σiu iv>j :
M(x, y) = ∑r

i=1 σi〈u i , x〉〈v i , y〉
I Forget about matrix representation. How to describe M?

I Pick any bases {e i}m
i=1 for Rm and {f j}n

j=1 for Rn

I Describe M by m × n function values M(e i , f j).
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p-linear functions
I T : Rn1 × Rn2 × · · · × Rnp → R
I Describe T by its behavior of basis elements, e.g.,
{e(1)

i }n1
i=1, . . . , {e

(p)
i }

np
i=1:

T (e(1)
i1 , . . . , e

(p)
ip )

(n1 × n2 × · · · × np function values.)
I Like matrices, can arrange into multi-index array

T ∈ Rn1×n2×···×np

I Also called a p-th order tensor
I p = 1: vector in Rn

I p = 2: matrix in Rm×n

I We will usually just consider p = 3 for simplicity
I “Formula” using multi-index array T ∈ Rn1×n2×n3 :

T (x, y , z) =
∑

i ,j,k
Ti ,j,kxiyjzk .
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Tensor norms

I Frobenius norm: ‖T‖F =
√∑

i ,j,k T 2
i ,j,k

I Operator (spectral) norm: ‖T‖2 = max
x∈Sn1−1,
y∈Sn2−1,
z∈Sn3−1

T (x, y , z)

I Optimization problem is NP-hard for p ≥ 3.
I In fact, most problems we take for granted as tractable

for matrices are NP-hard for tensors of order p ≥ 3.
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Rank

I Rank-1 tensor:

T (x, y , z) = 〈u, x〉〈v , y〉〈w , z〉

for some vectors u ∈ Rn1 , v ∈ Rn2 ,w ∈ Rn3 .
I Write as T = u ⊗ v ⊗w
I Multi-index array: Ti,j,k = uivjwk
I Generalization of matrix “outer product” uv> ≡ u ⊗ v

I Say rank(T ) = smallest r ∈ N such that T equals the sum of
r rank-1 tensors.

I Generalizes concept of matrix rank.
I Computing rank is NP-hard for p ≥ 3.
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Border rank

I Border rank of T : smallest r ∈ N such that there exists a
sequence (T k)k∈N of rank r tensors such that lim

k→∞
T k = T

I In general, border rank not the same as rank.
I Example:

I Take any distinct u, v ∈ Sn−1, and define

T := u ⊗ u ⊗ v + u ⊗ v ⊗ u + v ⊗ u ⊗ u ,

which has rank 3.
I Define

T 1/ε := 1
ε

(u + εv)⊗ (u + εv)⊗ (u + εv)− 1
ε

u ⊗ u ⊗ u .

I For ε = 1/k, have lim
k→∞

T k = T .
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Uniqueness of decompositions

I Suppose v1, v2, . . . , vn ∈ Rn are orthonormal.
I Matrix: M = ∑n

i=1 v i ⊗ v i = ∑n
i=1 v⊗2

i .
I Cannot recover {v i}n

i=1 just from M.
I 3rd-order tensor: T = ∑n

i=1 v i ⊗ v i ⊗ v i = ∑n
i=1 v⊗3

i .
I Can recover {v i}n

i=1 just from T exactly!
I Many general conditions imply uniqueness of higher-order

tensor decomposition.
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