
Random linear maps

Daniel Hsu

COMS 4772

1

JL lemma

2

JL lemma

Johnson and Lindenstrauss (1984) theorem. There is a
constant C > 0 such that the following holds. For any ε ∈ (0, 1/2),
point set S ⊂ Rd of cardinality |S| = n, and k ∈ N such that
k ≥ C log n

ε2 , there exists a linear map f : Rd → Rk such that

(1−ε)‖x−y‖22 ≤ ‖f (x)−f (y)‖22 ≤ (1+ε)‖x−y‖22 for all x, y ∈ S .

I There is a randomized procedure to efficiently construct f .
I Target dimension k need not depend on original dimension d .
I Any data analysis based on Euclidean distances among n points

can be approximately carried out in dimension O(log n).
I E.g., nearest-neighbor computations, many clustering procedures

3

Proofs of JL lemma
Many ways to (randomly) construct f that proves the lemma.

1. Original construction:

f (x) =
√

d
k Ax

where rows of A are orthonormal basis (ONB) for
k-dimensional subspace chosen uniformly at random.

2. Simpler construction (Indyk & Motwani, 1998):

f (x) = 1√
k

Ax

where A is a random matrix whose entries are iid N(0, 1).
I Can replace N(0, 1) with any subgaussian distribution with

mean zero and unit variance.

4

Uniformly random unit vector

Pick Z1,Z2, . . . ,Zd iid N(0, 1), and set

U := (Z1,Z2, . . . ,Zd)√
Z 2

1 + Z 2
2 + · · ·+ Z 2

d

.

Aside: if U and Wd ∼ χ2(d) are independent, then
√
WdU ∼ N(0, I) .

5

ONB for uniformly random k-dimensional subspace
I Pick U1 uniformly at random from Sd−1.

I Let columns of V 1 be ONB for subspace orthogonal to
span{U1}.

I Pick U2 uniformly at random from V 1Sd−2.
I Let columns of V 2 be ONB for subspace orthogonal to

span{U1,U2}.
I Pick U3 uniformly at random from V 2Sd−3.

I Let columns of V 3 be ONB for subspace orthogonal to
span{U1,U2,U3}.

I . . .
I Mapping is

f (x) =
√

d
k

〈U1, x〉
〈U2, x〉

...
〈Uk , x〉

.

6

ONB for uniformly random k-dimensional subspace

Easier method:

I Pick k×d random matrix A with all entries iid N(0, 1).
I Run Gram-Schmidt orthogonalization on the rows.

7

Requirements of the randomized construction

I f is a linear map, so f (x)− f (y) = f (x − y).
I f “works” for all

(n
2
)
squared lengths ‖f (x − y)‖22:

(1− ε)‖x − y‖22 ≤ ‖f (x − y)‖22 ≤ (1 + ε)‖x − y‖22 .

I Equivalently, ensure for each of
(n

2
)
unit vectors v := x−y

‖x−y‖2
,

1− ε ≤ ‖f (v)‖22 ≤ 1 + ε .

I Proof strategy: prove that, for any such unit vector v ,

P
(
‖f (v)‖22 /∈ [1− ε, 1 + ε]

)
≤ 2

n2 .

I By a union bound over all
(n

2
)
choices of v , we achieve the

required properties with probability at least 1/n.

8

Key lemma
Key lemma: for any fixed v ∈ Sd−1,

P
(
‖f (v)‖22 /∈ [1− ε, 1 + ε]

)
≤ 2

n2 .

I Simple construction: f (v) = 1√
k Av , where A is k×d

random matrix with iid N(0, 1) entries.
I Each entry of Av is a linear combination of iid N(0, 1) random

variables: for Z ∼ N(0, 1),

d∑

j=1
Ai ,jvj

dist=

d∑

j=1
v2

j

1/2

Z = Z .

I So distribution of ‖Av‖22 is same as that of ∑k
i=1 Z 2

i , where
Z1,Z2, . . . ,Zk are iid N(0, 1).

I I.e., Y := ‖Av‖22 ∼ χ2(k).
9

Proof of key lemma
To prove: for Y ∼ χ2(k),

P
(
Y /∈ k [1− ε, 1 + ε]

) ≤ 2
n2 .

I Recall: Y is (4k, 4)-subexponential, so

P(Y ≥ k + t) ≤ exp
(
−min

{
t2/k, t

}
/8
)
.

I Also can show that −Y is 2k-subgaussian, so

P(Y ≤ k − t) = P(−Y ≥ −k + t) ≤ exp
(
−t2/(4k)

)
.

I For t := kε, each bound is at most exp(−kε2/8).
I Proof follows by using assumption k ≥ 16 ln(n)

ε2 .

10

Finishing the proof of JL lemma
I For any pair of distinct points x, y ∈ S,

P
(
‖f (x)− f (y)‖22
‖x − y‖22

/∈ [1− ε, 1 + ε]
)
≤ 2 exp

(
−kε2/8

)
≤ 2

n2 .

I Union bound over all
(n

2
)
pairs:

P
(
∃x, y ∈ S � ‖f (x)− f (y)‖22

‖x − y‖22
/∈ [1− ε, 1 + ε]

)
≤
(
n
2

)
2
n2 .

I Therefore, with probability at least 1/n,

‖f (x)− f (y)‖22
‖x − y‖22

∈ [1− ε, 1 + ε] for all x, y ∈ S .

I Note: success probability is 1− δ if k ≥ 16 ln(n)+8 ln(1/δ)
ε2 .

11

Original construction
Original construction:

f (x) =
√

d
k Ax

where rows of A are ONB for k-dimensional subspace chosen
uniformly at random.

I Elementary proof by Dasgupta and Gupta (2002) also reduces
to similar key lemma: for any fixed v ∈ Sd−1,

P
(
‖f (v)‖22 /∈ [1− ε, 1 + ε]

)
≤ 2 exp

(
−Ω(kε2)

)
.

I Key insight: Distribution of ‖Av‖22 is the same as ‖RU‖22,
where R’s rows are ONB for fixed k-dimensional subspace, and
U is a uniformly random unit vector in Sd−1.

12

Fast JL transform

13

Computational issues

I d = original dimension; k = target dimension.
I Time to apply f : Rd → Rk is O(kd).

I Due to matrix-vector multiplication.
I Not obvious how to speed-up this up because matrix is mostly

unstructured.

14

Using a structured random matrix

I Simple idea: suppose M is sparse, i.e., nnz(M)� kd .
I Can multiply vector by M in time O(nnz(M)).
I Still want M to satisfy “JL property”: for any fixed x ∈ Sd−1,

P
(
‖Mx‖2

2 /∈ [1− ε, 1 + ε]
)
≤ 2 exp

(
−Ω(kε2)

)
.

15

Sparse random matrix

Define M to be k×d random matrix with iid entries

Mi ,j := 1√
θk

Ai ,jBi ,j ,

where Ai ,j ∼ N(0, 1) and Bi ,j ∼ Bern(θ), which are also independent
of each other.

I Write as M = 1√
θk (A� B).

I Scaling ensures E ‖Mx‖22 = 1 for every x ∈ Sd−1.
I E(nnz(M)) = θkd .
I Great if we can use θ = O(1/d + 1/k), which would give

E(nnz(M)) = O(k + d).
I But does it satisfy JL property?

I Depends on x . . .

16

JL property for sparse random matrix

‖Mx‖22 =
k∑

i=1

d∑

j=1

1√
θk

Ai ,jBi ,jxj

2
dist= 1

θk

k∑

i=1

d∑

j=1
Bi ,jx2

j

Z 2

i

where Z1,Z2, . . . ,Zk are iid N(0, 1).

I Suppose x = (1, 0, . . . , 0).
I ‖Mx‖2

2 depends only on first column of M:

‖Mx‖2
2

dist= 1
θk

k∑

i=1
Bi,1Z 2

i .

I Variance is ≈ 3/(θk), which is O(ε2) only if θ = Ω(1/(kε2)).

17

JL property for sparse random matrix

‖Mx‖22 =
k∑

i=1

d∑

j=1

1√
θk

Ai ,jBi ,jxj

2
dist= 1

θk

k∑

i=1

d∑

j=1
Bi ,jx2

j

Z 2

i

where Z1,Z2, . . . ,Zk are iid N(0, 1).

I Suppose instead x = (d−1/2, d−1/2, . . . , d−1/2).
I Averaging effect: with high probability,

d∑

j=1
Bi,jx2

j = 1
d

d∑

j=1
Bi,j = θ ± O

(√
θ

d + 1
d

)
.

I Just need θ = Ω(1/d). In general, just need θ = Ω(‖x‖2
∞).

18

Densification

I Sparse random matrix not great for sparse unit vectors, but
great for dense unit vectors, which have

‖x‖2∞ = max
i∈[d]

x2
i ≈

1
d .

I Idea: compose two linear maps.
1. “Densifying” orthogonal transformation:

(maybe sparse) x 7→ Qx (likely dense) .

2. Sparse linear map:

Qx 7→ 1√
θk

(A� B)(Qx) .

19

Simple densification (picture)

𝑥 𝑥

↦

Figure 1: Densifying orthogonal transformation

20

Simple densification

I Let Q be uniformly random d×d orthogonal matrix.
I i-th row Q>

i of Q is a uniformly random unit vector.
I i-th entry of Qx is 〈Q i , x〉.

I Can show that

P
(|〈Qi , x〉| ≥ ε

) ≤ 2e−ε2(d−1)/2 .

I Union bound ⇒ with high probability,

〈Qi , x〉2 ≤ O
(
log d
d

)
for all i = 1, 2, . . . , d .

21

Faster densification

I Unfortunately, uniformly random orthogonal matrix also mostly
unstructured; time to apply is O(d2).

I Insight of (Ailon and Chazelle, 2006): can use highly
structured “densifying” orthogonal matrix:

x 7→ 1√
d

HDx .

I H = Hd is the d×d Hadamard matrix (not random).
I D is random diagonal matrix where diagonal entries are iid

Rademacher.

22

Hadamard matrices

I Recursive definition (for d a power of two):

H1 := +1 , Hd :=
[

+Hd/2 +Hd/2
+Hd/2 −Hd/2

]
.

I Example: d = 4

H4 =

+1 +1 +1 +1
+1 −1 +1 −1
+1 +1 −1 −1
+1 −1 −1 +1

.

I Fact 1: 1√
d Hd is orthogonal, and so is 1√

d HdD.
I Fact 2: Multiplication by D requires O(d) time.
I Fact 3: Multiplication by Hd requires O(d log d) time!

23

Hadamard transform via divide-and-conquer

I To compute Hdx:
I Partition x = (x1, x2), so x1, x2 ∈ Rd/2.
I Recursively compute Hd/2x1 and Hd/2x2.
I Compute Hd/2x1 + Hd/2x2 and Hd/2x1 −Hd/2x2.
I Return Hdx =

[
Hd/2x1 + Hd/2x2
Hd/2x1 −Hd/2x2

]
.

I Total time: O(d log d).

24

Analysis of randomized Hadamard transform

I Let Y := 1√
d HDx for fixed unit vector x ∈ Sd−1.

I Want to show that ‖Y‖2∞ = O
(

log d
d

)
with high probability.

I For each i = 1, 2, . . . , d ,

Yi = 1√
d

d∑

j=1
Hi ,jσjxj

dist= 1√
d

d∑

j=1
xjσj ,

where σ1, σ2, . . . , σd are iid Rademacher.
I Each Yi has mean zero and is 1-subgaussian, so with high

probability,

Y 2
i ≤ O

(
log d
d

)
for all i = 1, 2, . . . , d .

25

Overall random linear map (picture)

↦↦

Figure 2: Randomized Hadamard transform + sparse random linear map

26

Overall random linear map

I Overall linear map from Rd to Rk :
1. Densification (randomized Hadamard transform):

x 7→ y := 1√
d

HDx .

2. Dimension reduction (sparse random linear map):

y 7→ 1√
θk

(A� B)y .

I Overall running time: O(d log d + θkd).
I Can use θ ≈ log d

d , so running time is O((d + k) log d).

27

