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JL lemma

Johnson and Lindenstrauss (1984) theorem. There is a
constant C > 0 such that the following holds. For any € € (0,1/2),
point set S C RY of cardinality |S| = n, and k € N such that

k > %, there exists a linear map f: RY — RX such that

(1-e)llx=ylz < [f(x)=f(y)ll5 < (1+e)llx—yl3 forallx,y €S.

» There is a randomized procedure to efficiently construct f.

» Target dimension k need not depend on original dimension d.

» Any data analysis based on Euclidean distances among n points
can be approximately carried out in dimension O(log n).

» E.g., nearest-neighbor computations, many clustering procedures

Proofs of JL lemma

Many ways to (randomly) construct f that proves the lemma.

f(x) = \/%Ax

where rows of A are orthonormal basis (ONB) for
k-dimensional subspace chosen uniformly at random.

2. Simpler construction (Indyk & Motwani, 1998):

1. Original construction:

f(x) = %Ax

where A is a random matrix whose entries are iid N(0, 1).

» Can replace N(0, 1) with any subgaussian distribution with
mean zero and unit variance.




Uniformly random unit vector

Pick Z1, 2>, ..., Zy iid N(0,1), and set

U — (217227”-’Zd)
VB+ZB++ 23

Aside: if U and Wy ~ x?(d) are independent, then

VWaU ~ N(O,1).

ONB for uniformly random k-dimensional subspace

» Pick U; uniformly at random from S9—1.

» Let columns of V; be ONB for subspace orthogonal to
span{U; }.

» Pick U, uniformly at random from V15972,

» Let columns of V, be ONB for subspace orthogonal to
span{Uy, U>}.

» Pick Uz uniformly at random from V,5973.

» Let columns of V3 be ONB for subspace orthogonal to
span{Ul, U2, U3}

» Mapping is




ONB for uniformly random k-dimensional subspace

Easier method:

» Pick kxd random matrix A with all entries iid N(0O, 1).
» Run Gram-Schmidt orthogonalization on the rows.

Requirements of the randomized construction

» fis a linear map, so f(x) — f(y) = f(x — y).

> f “works" for all (J) squared lengths ||f(x —y)|3:
(IT-g)x—yl3 < [If(x=y)5 < (L+e)x—yl5.
> Equivalently, ensure for each of (3) unit vectors v := I;(—_;,Ilz’

l—e < [f(WI3 < 1+e.
» Proof strategy: prove that, for any such unit vector v,
2
P([|f(v)||53¢[1—e¢,1 < =
(IFWIB gL -e1+e) < 5

> By a union bound over all (3) choices of v, we achieve the
required properties with probability at least 1/n.




Key lemma
Key lemma: for any fixed v € S971,

P(IFWB ¢ —=14e) < 5

» Simple construction: f(v) = ﬁAv, where A is kxd

random matrix with iid N(0, 1) entries.
» Each entry of Av is a linear combination of iid N(0, 1) random

variables: for Z ~ N(0, 1),
J 1/2
vV Z =2
—1

J

d g
Ist
> Ay =
j:]_ [

J

v

So distribution of ||Av||3 is same as that of >_%_; Z? where
Zl, Z2, ceey Zk are iid N(O, 1).
le., Y := | Av|j5 ~ x?(k).

v

Proof of key lemma

To prove: for Y ~ x2(k),

P(Y ¢ k[l—c,1+¢e]) < %

v

Recall: Y is (4k,4)-subexponential, so

P(Y > k+t) < exp(— min{ ¢/, t}/s).

v

Also can show that —Y is 2k-subgaussian, so

P(Y <k—t) = P(-Y > —k+1) < exp(—t/(4k)).

\4

For t := ke, each bound is at most exp(—ke2/8).
Proof follows by using assumption k > %nz("). ]

v




Finishing the proof of JL lemma

» For any pair of distinct points x,y € S,

P<|f(x) ~ ()

n?’

13 :
Ix — y|2 Z[l—e,1+¢]| < 2exp(—k5 /8) < =

> Union bound over all (3) pairs:

1P><3x,yes. I7(x) ~ Fy)ll2 ¢[1—s,1+s]> < (”)3.

Ix = yl3

» Therefore, with probability at least 1/n,

I (x) — ()13
Ix = ylI3

€[l—e,14¢] forallx,yeS. [

» Note: success probability is 1 — § if k > 16'”(”)‘&':28'"(1/5)_

Original construction

Original construction:

f(x) = \/gAx

where rows of A are ONB for k-dimensional subspace chosen
uniformly at random.

» Elementary proof by Dasgupta and Gupta (2002) also reduces
to similar key lemma: for any fixed v € S971,

P(IF(WI3¢ 1 —e1+¢]) < 2exp(—Q(ke?)) .

> Key insight: Distribution of ||Av||3 is the same as ||RU||3,
where R's rows are ONB for fixed k-dimensional subspace, and
U is a uniformly random unit vector in 91




Fast JL transform

Computational issues

» d = original dimension; k = target dimension.
> Time to apply f: RY — R is O(kd).
» Due to matrix-vector multiplication.

» Not obvious how to speed-up this up because matrix is mostly
unstructured.




Using a structured random matrix

» Simple idea: suppose M is sparse, i.e., nnz(M) < kd.

» Can multiply vector by M in time O(nnz(M)).
» Still want M to satisfy “JL property”: for any fixed x € S9—1,

P(||Mx||§¢[1—s,1+s]) < 2exp(—Q(k52)>.

Sparse random matrix

Define M to be kxd random matrix with iid entries

1
= ——A

Mij = ijBij;
o] \/(9—/( ) )

where A; j ~ N(0,1) and B;; ~ Bern(8), which are also independent
of each other.

' — 1
> Write as M = \/W(A ©® B).
> Scaling ensures |E ||Mx||3 = 1 for every x € S9-1.
» E(nnz(M)) = 0kd.

v

Great if we can use # = O(1/d + 1/k), which would give
E(nnz(M)) = O(k + d).
» But does it satisfy JL property?

» Dependson x ...




JL property for sparse random matrix

2
i 1 k d
IMx|)> = Z(Z A,JB,JXJ) = ﬁZ(Z Bqu) Z;
i=1 \j=1

11_/1

where Zy, 25, ..., Zy are iid N(0, 1),

» Suppose x = (1,0,...,0).
> ||Mx||3 depends only on first column of M:

k
st 1
IMxlp = 22" Bzl
i=1

» Variance is ~ 3/(6k), which is O(¢?) only if § = Q(1/(ke?)).

JL property for sparse random matrix

2
k k d
1 dist 1
HMXH% = Z (Z \/ﬁ ij ,JXJ) = 0k Z (Z Bi,ij2> Zi2
i=1 \j=1

Jj=1

where 71,25, ..., Zy are iid N(0,1).

> Suppose instead x = (d~1/2,d"V2 ... d7V/?).

» Averaging effect: with high probability,

d 1 d 0 1
2 _ R — 4 =
jgl B,"jXJ- = jgl Bij = Hj:O(\/ + ) .

> Just need 0 = Q(1/d). In general, just need 6 = Q(||x]|2,).




Densification

» Sparse random matrix not great for sparse unit vectors, but
great for dense unit vectors, which have

2 2
x5 max X

Q|+

» ldea: compose two linear maps.

1. “Densifying” orthogonal transformation:

(maybe sparse) x — Qx (likely dense).

2. Sparse linear map:

1
Qx — ﬁ(A ® B)(Qx).

Simple densification (picture)

AN
vd

Figure 1: Densifying orthogonal transformation




Simple densification

» Let @ be uniformly random dxd orthogonal matrix.

» i-th row Q; of Q is a uniformly random unit vector.
> i-th entry of Qx is (Q;, x).

» Can show that
P((Qi,x)] > ¢) < 2e7=(41)/2,

» Union bound =- with high probability,

(Qi,x)? < O<|O§d> foralli=1,2,...,d.

Faster densification

» Unfortunately, uniformly random orthogonal matrix also mostly
unstructured; time to apply is O(d?).

> Insight of (Ailon and Chazelle, 2006): can use highly
structured “densifying” orthogonal matrix:

1
x — —HDx.
Vd

» H = H, is the dxd Hadamard matrix (not random).

» D is random diagonal matrix where diagonal entries are iid
Rademacher.




Hadamard matrices

» Recursive definition (for d a power of two):

H, = +1, H, =

tHapp +Hyp|
+Hy2 —Hgp

v

Example: d =4

+1 +1 +1 +1
+1 -1 +1 -1
+1 +1 -1 -1
+1 -1 -1 +1

H, =

v

Fact 1: %Hd is orthogonal, and so is %HdD.
Fact 2: Multiplication by D requires O(d) time.
Fact 3: Multiplication by Hy4 requires O(d log d) time!

v Yy

Hadamard transform via divide-and-conquer

» To compute Hyx:

» Partition x = (x1, X2), S0 X1, X2 € R9/2,

> Recursively compute Hy/ox1 and Hy px5.

» Compute Hy/ox1 + Hg/x2 and Hyox1 — Hyoxo.
Hgjox1+ Hg oxo

Hg/ox1 — Hypoxa|

» Total time: O(d logd).

» Return Hyx =




Analysis of randomized Hadamard transform

Let Y = ﬁHDx for fixed unit vector x € S91.

Want to show that || Y2, = O('%%¢) with high probability.
Foreachi=1,2,...,d,

v

v

v

d
dist 1
Y, = E Hijoixj = g Xioj,
\/_ XY e MV dj:]_JJ

where 01,09, ...,04 are iid Rademacher.
» Each Y; has mean zero and is 1-subgaussian, so with high
probability,

]

Y2 < O<|O§d> foralli=1,2,....d.

Overall random linear map (picture)

S

Figure 2: Randomized Hadamard transform + sparse random linear map




Overall random linear map

» Overall linear map from RY to R:

1. Densification (randomized Hadamard transform):

1
x — y = —HDx.

Vd

2. Dimension reduction (sparse random linear map):

1
— ——(AQ® B)y.
y \/ﬁ( )y

» Overall running time: O(d log d + 6kd).

» Can use 6 ~ 'Ogd, so running time is O((d + k) log d).




