1 Notes on matrix perturbation and Davis-Kahan sin(©) theorem

In many situations, there is a symmetric matrix of interest A € R but one only has a perturbed
version of it A = A+ H (H is a “small” symmetric matrix). How is A affected by H?

Example: PCA. Let A = cov(X) for some random vector X, and let A be the sample covariance
matrix on independent copies of X. If X is concentrated on a low dimensional subspace, then
we can hope to discover this subspace from the principal components of A. How accurate is the
subspace we find?

1.1 Spectral theorem

A non-zero vector v is an eigenvector of A if Av = Av for some scalar A called the corresponding

eigenvalue.
Theorem 1. If A € R™*" is symmetric, then there is an orthonormal basis {v1,...,v,} consisting
of eigenvectors of A with real corresponding eigenvalues Ay, ..., A\p:

A= oo™ 4. F oo

1.2 Eigenvalues

How are the eigenvalues of A affected by H?
Let X\;(M) be the ith largest eigenvalue of a matrix M. Then

AM(A) = ||Ilrtl||a:X1 u(A+H)u

< max v*Au + max v*Hu
flull=1 [Jull=1

= M1 (A) + M\ (H).

Also, letting v; be the top eigenvector of A,

)\1(A~) > ’Ul*(A-f-H)’Ul
= )\1(_/4) +Ul*HU1
> >\1(A) +)‘n(H)

Therefore
AM(A) + M (H) < M(A) < M(A) + \(H).

This can be extended to the 2nd, 3rd, etc. eigenvalues.
Theorem 2 (Weyl). Fori=1,...,n:
MN(A) + M (H) < N(A) < N(A) + M\ (H).

Therefore the (ordered) eigenvalues of a matrix are fairly stable with respect to a small pertur-
bation.



1.3 Eigenvectors, eigenspaces

An eigenspace of A is the span of some eigenvectors of A. We can decompose A into its action on
an eigenspace S and its action on the orthogonal complement S=:

A= EgAoEy* + E1A1EL*

where Ej is an orthonormal basis for S (e.g., the eigenvectors of A that span S), and E; is an
orthonormal basis for S+ (this follows from the spectral theorem). We can similarly decompose
A = A+ H with respect to a “corresponding” eigenspace S (with dim S = dim S):

A= oA Fy* + YA FY .

How is close is S to S?
A few things to consider:

1. How are we choosing the eigenspace S of A, and what is a suitable corresponding eigenspace
S of A? (Or vice versa.)

2. How do we measure the closeness between subspaces?
3. Under what conditions will the subspaces be close?

Suppose we find a few eigenvalues of A that somehow stand out from the rest. For instance,
as in PCA, we may find the first few eigenvalues to be much larger than the rest. Let S be the
corresponding eigenspace. If there is a similarly outstanding group of eigenvalues of A, then the
hope is that the corresponding eigenspace .5 will be close to S in some sense. For instance, we may
be interested in how well S approximates vectors in S. Any vector in S can be written as Fya for
some o € RIMS: the projection of this vector onto S is FyFy*Egae. Then

”E(]Ot — FoFo*EoOé” = ||(I — F()FO*)E()O[H
= ||F1F1*E00(||
= ||F1" Ep||.

Therefore vectors in S will be well-approximated by S if F1*Ep is “small”.

The condition we will need is separation between the eigenvalues corresponding to S and those
corresponding to St Suppose the eigenvalues corresponding to S are all contained in an interval
[a,b]. Then we will require that the eigenvalues corresponding to S+ be excluded from the interval
(a—06,b+ ¢) for some § > 0. To see why this is necessary, consider the following example:

146 0 [-5 4 - [1 4
A._[ ! 1_5}, H._[ ’ 5}, A._[(s 1].

Here, the “size” of H is comparable to the gap between the relevant eigenvalues. Then the eigen-
values of A are Ay = 1+ 0 and A2 = 1 — 4, and its corresponding eigenvectors are vy = = (1,0)
and vy = (0,1). The eigenvalues of A are also )\1 =146 and )\2 1 — 9, but its corresponding
eigenvectors are ¥, = (1/v/2,1/+/2) and @ = (—1/v/2,1/+/2); we have @5v; = 1/4/2, which can be
arbitrarily large relative to d.



Theorem 3 (Davis-Kahan sin(©) theorem). Let A = EgAoEo*+E1A1E1* and A+H = FoAoFo™ +
FiA L Fy* be symmetric matrices with [Ey, E1] and [Fy, F1] orthogonal. If the eigenvalues of Agy are
contained in an interval (a,b), and the eigenvalues of A1 are excluded from the interval (a—0,b+9)

for some 6 > 0, then
[ £ H Eq||

[ F1" Eol| < 5

for any unitarily invariant norm || - ||.
Proof. Since AEy = EgAoEy*Ey + E1A1E1*Ey = EgAp, we have

HE),=AEy+ HEy — EyAg
= (A + H)EO — EyAy.

Furthermore, F1*(A+ H) = A F1™, so

WHE = Fl*(A + H)EO — F1"EyAg
= AlFl*EO — Fl*E(]A().
Let ¢:= (a+b)/2 and r := (b —a)/2 > 0. By the triangle inequality, we have
”Fl*HE()H = HAIFI*EO — Fl*E()A()H
= H(Al — CI)Fl*EO — Fl*E()(AO — CI)H
> [[(Ar = cl) Py " Eg | — || F1" Eo(Ao — cI)|.
Here we have used a centering trick so that Ay — ¢l has eigenvalues contained in [—r,r]|, and

Ay — ¢l has eigenvalues excluded from (—r — d,7 + ). This implies that ||A; — cI|ls < r and
(A1 —cl)7Y|2 < (r + )71, respectively. Therefore

1
A —cDF*Ey|| > ———— ||V E,
(A1 = cI)Fy* Eol| > ||(A1—cI)—1H2H 1" Eol|
> (r+9)|[F1" Eo|

and

[ F1"Eo(Ao — cl)|| < || Ao — cl||2]| F1 ™ Eo|

S THFI*EOH

We conclude that ||Fy*H Ey|| > || Fi*Eo||. O



