
1 Notes on matrix perturbation and Davis-Kahan sin(Θ) theorem

In many situations, there is a symmetric matrix of interest A ∈ Rn×n, but one only has a perturbed
version of it Ã = A+H (H is a “small” symmetric matrix). How is Ã affected by H?

Example: PCA. Let A = cov(X) for some random vector X, and let Ã be the sample covariance
matrix on independent copies of X. If X is concentrated on a low dimensional subspace, then
we can hope to discover this subspace from the principal components of Ã. How accurate is the
subspace we find?

1.1 Spectral theorem

A non-zero vector v is an eigenvector of A if Av = λv for some scalar λ called the corresponding
eigenvalue.

Theorem 1. If A ∈ Rn×n is symmetric, then there is an orthonormal basis {v1, . . . , vn} consisting
of eigenvectors of A with real corresponding eigenvalues λ1, . . . , λn:

A = λ1v1v1
∗ + . . .+ λnvnvn

∗.

1.2 Eigenvalues

How are the eigenvalues of Ã affected by H?
Let λi(M) be the ith largest eigenvalue of a matrix M . Then

λ1(Ã) = max
‖u‖=1

u∗(A+H)u

≤ max
‖u‖=1

u∗Au+ max
‖u‖=1

u∗Hu

= λ1(A) + λ1(H).

Also, letting v1 be the top eigenvector of A,

λ1(Ã) ≥ v1∗(A+H)v1

= λ1(A) + v1
∗Hv1

≥ λ1(A) + λn(H).

Therefore
λ1(A) + λn(H) ≤ λ1(Ã) ≤ λ1(A) + λ1(H).

This can be extended to the 2nd, 3rd, etc. eigenvalues.

Theorem 2 (Weyl). For i = 1, . . . , n:

λi(A) + λn(H) ≤ λi(Ã) ≤ λi(A) + λ1(H).

Therefore the (ordered) eigenvalues of a matrix are fairly stable with respect to a small pertur-
bation.
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1.3 Eigenvectors, eigenspaces

An eigenspace of A is the span of some eigenvectors of A. We can decompose A into its action on
an eigenspace S and its action on the orthogonal complement S⊥:

A = E0A0E0
∗ + E1A1E1

∗

where E0 is an orthonormal basis for S (e.g., the eigenvectors of A that span S), and E1 is an
orthonormal basis for S⊥ (this follows from the spectral theorem). We can similarly decompose
Ã = A+H with respect to a “corresponding” eigenspace S̃ (with dim S̃ = dimS):

Ã = F0Λ0F0
∗ + F1Λ1F1

∗.

How is close is S̃ to S?
A few things to consider:

1. How are we choosing the eigenspace S of A, and what is a suitable corresponding eigenspace
S̃ of Ã? (Or vice versa.)

2. How do we measure the closeness between subspaces?

3. Under what conditions will the subspaces be close?

Suppose we find a few eigenvalues of Ã that somehow stand out from the rest. For instance,
as in PCA, we may find the first few eigenvalues to be much larger than the rest. Let S̃ be the
corresponding eigenspace. If there is a similarly outstanding group of eigenvalues of A, then the
hope is that the corresponding eigenspace S will be close to S̃ in some sense. For instance, we may
be interested in how well S̃ approximates vectors in S. Any vector in S can be written as E0α for
some α ∈ RdimS ; the projection of this vector onto S̃ is F0F0

∗E0α. Then

‖E0α− F0F0
∗E0α‖ = ‖(I − F0F0

∗)E0α‖
= ‖F1F1

∗E0α‖
= ‖F1

∗E0α‖.

Therefore vectors in S will be well-approximated by S̃ if F1
∗E0 is “small”.

The condition we will need is separation between the eigenvalues corresponding to S and those
corresponding to S̃⊥. Suppose the eigenvalues corresponding to S are all contained in an interval
[a, b]. Then we will require that the eigenvalues corresponding to S̃⊥ be excluded from the interval
(a− δ, b+ δ) for some δ > 0. To see why this is necessary, consider the following example:

A :=

[
1 + δ 0

0 1− δ

]
, H :=

[
−δ δ
δ δ

]
, Ã :=

[
1 δ
δ 1

]
.

Here, the “size” of H is comparable to the gap between the relevant eigenvalues. Then the eigen-
values of A are λ1 = 1 + δ and λ2 = 1 − δ, and its corresponding eigenvectors are v1 = (1, 0)
and v2 = (0, 1). The eigenvalues of Ã are also λ̃1 = 1 + δ and λ̃2 = 1 − δ, but its corresponding
eigenvectors are ṽ1 = (1/

√
2, 1/
√

2) and ṽ2 = (−1/
√

2, 1/
√

2); we have ṽ∗2v1 = 1/
√

2, which can be
arbitrarily large relative to δ.
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Theorem 3 (Davis-Kahan sin(Θ) theorem). Let A = E0A0E0
∗+E1A1E1

∗ and A+H = F0Λ0F0
∗+

F1Λ1F1
∗ be symmetric matrices with [E0, E1] and [F0, F1] orthogonal. If the eigenvalues of A0 are

contained in an interval (a, b), and the eigenvalues of Λ1 are excluded from the interval (a−δ, b+δ)
for some δ > 0, then

‖F1
∗E0‖ ≤

‖F1
∗HE0‖
δ

for any unitarily invariant norm ‖ · ‖.

Proof. Since AE0 = E0A0E0
∗E0 + E1A1E1

∗E0 = E0A0, we have

HE0 = AE0 +HE0 − E0A0

= (A+H)E0 − E0A0.

Furthermore, F1
∗(A+H) = Λ1F1

∗, so

F1
∗HE0 = F1

∗(A+H)E0 − F1
∗E0A0

= Λ1F1
∗E0 − F1

∗E0A0.

Let c := (a+ b)/2 and r := (b− a)/2 ≥ 0. By the triangle inequality, we have

‖F1
∗HE0‖ = ‖Λ1F1

∗E0 − F1
∗E0A0‖

= ‖(Λ1 − cI)F1
∗E0 − F1

∗E0(A0 − cI)‖
≥ ‖(Λ1 − cI)F1

∗E0‖ − ‖F1
∗E0(A0 − cI)‖.

Here we have used a centering trick so that A0 − cI has eigenvalues contained in [−r, r], and
Λ1 − cI has eigenvalues excluded from (−r − δ, r + δ). This implies that ‖A1 − cI‖2 ≤ r and
‖(Λ1 − cI)−1‖2 ≤ (r + δ)−1, respectively. Therefore

‖(Λ1 − cI)F1
∗E0‖ ≥

1

‖(Λ1 − cI)−1‖2
‖F1

∗E0‖

≥ (r + δ)‖F1
∗E0‖

and

‖F1
∗E0(A0 − cI)‖ ≤ ‖A0 − cI‖2‖F1

∗E0‖
≤ r‖F1

∗E0‖.

We conclude that ‖F1
∗HE0‖ ≥ δ‖F1

∗E0‖.
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