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1 Linear separators

A dataset S from Rd×{−1, 1} is linearly separable if there exists w ∈ Rd and
b ∈ R such that

y(wTx+ b) > 0 for all (x, y) ∈ S.

We use the output space Y = {−1, 1} (instead of {0, 1}) for notational conve-
nience. The linear classifier determined by this weight vector w and intercept
parameter b is called a linear separator for the dataset S.

2 Approximate MLE for logistic regression

How can we find a linear separator for a linearly separable dataset S? One ap-
proach is to find an approximate maximizer of the log-likelihood from the lo-
gistic regression model. Any algorithm that can find (w, b) with log-likelihood
arbitrarily close to the maximum log-likelihood will do the job.

The log-likelihood of (w, b) given S in the logistic regression model is

lnL(w, b) =
∑

(x,y)∈S

ln

(
1

1 + exp(−y(wTx+ b))

)
.

Notice that, in each term from the summation, the argument to the logarithm
is strictly between 0 and 1, and hence the value of the logarithm is negative.
This means that lnL(w, b) < 0, regardless of the choice of (w, b).

However, if S is linearly separable, then it is possible to achieve log-
likelihood arbitrarily close to 0. Suppose (w, b) determines a linear separator
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for S. Then, for any c > 0, (cw, cb) also determines a linear separator for S,
because

y(wTx+ b) > 0 ⇔ y((cw)Tx+ cb) > 0.

Moreover, by choosing c sufficiently large, we can make

y((cw)Tx+ cb)

an arbitrarily large positive number, which in turn makes

1

1 + exp(−y((cw)Tx+ cb))

arbitrarily close to 1. Therefore, each term in the log-likelihood of (cw, cb)
can be made arbitrarily close to 0, and hence the log-likelihood of (cw, cb)
itself can be made arbitrarily close to 0. This means that

max
(w,b)∈Rd×R

lnL(w, b) = 0,

i.e., the maximum log-likelihood is 0.1

It remains to show that any (w, b) with log-likelihood sufficiently close to
the maximum log-likelihood (which is 0) must determine a linear separator
for S. Suppose lnL(w, b) > − ln(2). Then

ln

(
1

2

)
< lnL(w, b) ≤ ln

(
1

1 + exp(−y(wTx+ b))

)
for all (x, y) ∈ S.

This implies that

1

1 + exp(−y(wTx+ b))
>

1

2
for all (x, y) ∈ S,

which is the same as (w, b) determining a linear separator for S.

3 Perceptron

Another algorithm for finding a linear separator for a linearly separable
dataset S is the Perceptron algorithm.

1Technically, it is the supremum of the log-likehood that is 0. But we will ignore such technicalities, since
real analysis is not a prerequisite for this class.
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• Start with w = 0 and b = 0

• While there exists (x, y) ∈ S such that y(xTw + b) ≤ 0:

– Let (x, y) ∈ S be any such example

– Update (w, b):

w ← w + yx

b← b+ y

• Return (w, b)

It is clear from the description of the algorithm that if (w, b) is returned, then
it must be a linear separator for S. On the other hand, it is not clear if the
algorithm will terminate; even if it does, it is not clear how many updates are
needed. So the rest of this section is devoted to addressing these concerns.

We assume that S is linearly separable, so let (w⋆, b⋆) be the weight vector
and intercept parameter that satisfy

y(xTw⋆ + b⋆) > 0 for all (x, y) ∈ S.

Moreover, it will be helpful to define two additional parameters:

γ = min
(x,y)∈S

y(xTw⋆ + b⋆),

R = max
(x,y)∈S

∥x∥.

Consider a single update in the execution of Perceptron: let (w, b) be
the parameters before the update, and let (w̃, b̃) be the parameters after the
update. Let (x, y) be the example chosen for the update. Then

w̃Tw⋆ + b̃b⋆ = (w + yx)Tw⋆ + (b+ y)b⋆

= wTw⋆ + bb⋆ + y(xTw⋆ + b⋆)

≥ wTw⋆ + bb⋆ + γ

where the inequality uses the definition of γ. Moreover,

∥w̃∥2 + b̃2 = ∥w + yx∥2 + (b+ y)2

= ∥w∥2 + b2 + 2y(xTw + b) + ∥x∥2 + 1

≤ ∥w∥2 + b2 + ∥x∥2 + 1

≤ ∥w∥2 + b2 +R2 + 1
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where the inequalities use the choice of (x, y) for the update and the definition
of R.

Before any updates, we have

wTw⋆ + bb⋆ = 0

and
∥w∥2 + b2 = 0.

So after T updates, we are left with (w, b) satisfying

wTw⋆ + bb⋆ ≥ Tγ

and
∥w∥2 + b2 ≤ T (R2 + 1).

Also, by the Cauchy-Schwarz inequality,

wTw⋆ + bb⋆ ≤
√
∥w∥2 + b2

√
∥w⋆∥2 + (b⋆)2

Combining these last three inequalities gives

Tγ ≤
√

T (R2 + 1)
√
∥w⋆∥2 + (b⋆)2,

which simplifies to

T ≤ (R2 + 1)(∥w⋆∥2 + (b⋆)2)

γ2
.

Since (w⋆, b⋆) determines a linear separator for S, it must be that γ > 0, so
the upper-bound on T is finite. This implies that Perceptron will terminate
after at most

(R2 + 1)(∥w⋆∥2 + (b⋆)2)

γ2

updates.
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