1 Review of probability theory

1.1 Why probability theory?

- Probability theory provides mathematical framework for reasoning about prediction problems
- (Some alternatives: approximation theory, game theory, ...)
- Basic idea: regard quantities you are uncertain about (e.g., quantities you want to predict) as random variables defined on a probability space
- Starting from basic idea, can use probability theory to derive properties of optimal predictions, characterize uncertainty of error rate estimates, design and analyze learning algorithms, etc.

1.2 Probability spaces

- Goal: mathematical model for experiment with random outcomes (E.g., coin tosses, dice rolls, roulette wheel spins, ...)
- A (discrete) probability space (Ω, m) is comprised of a sample space Ω and a probability (mass) function m
- Sample space Ω is the (finite or countable) set of possible outcomes
- An $\underline{\text { event }}$ is a subset of Ω
- Example: toss a coin

$$
\begin{aligned}
& \text { * Possible outcomes: } \Omega=\{\mathrm{H}, \mathrm{~T}\} \\
& \text { * "heads" }=\{\mathrm{H}\} \\
& \text { * "tails" }=\{\mathrm{T}\} \\
& \text { * } \ldots
\end{aligned}
$$

- Example: toss a coin twice
* Possible outcomes: $\Omega=\{$ TT, TH, HT, HH $\}$
* "both tails" $=\{T T\}$
* "at least one heads" $=\{\mathrm{TH}, \mathrm{HT}, \mathrm{HH}\}$
* ...
- Example: roll a 6 -sided die
* Possible outcomes: $\Omega=\{\odot, \odot, \odot, \odot, \odot, \because \in\}$
* "odd" $=\{\odot, \odot, \odot\}$

*"at most $3 "=\{\odot, \odot, \odot\}$
* ...
- Example: repeatedly roll a 6 -sided die and stop after seeing a " 6 "

* "one roll" $=\{$ [固 $\}$

* ...
- Probability (mass) function m is a function that assigns a real number to each outcome in Ω in a way that satisfies
* $m(\omega) \geq 0$ for all $\omega \in \Omega$ (non-negativity), and
$* \sum_{\omega \in \Omega} m(\omega)=1$ (normalization)
- Probability of an event $E \subseteq \Omega$ in probability space (Ω, m) is

$$
\operatorname{Pr}(E)=\sum_{\omega \in E} m(\omega)
$$

(Notation unfortunately does not explicitly show (Ω, m))

- Sometimes we "abuse notation" by writing $m(E)$ to mean $\operatorname{Pr}(E)$
- Example: toss a fair coin twice
* $m(\omega)=1 / 4$ for every possible outcome ω

$$
\operatorname{Pr}(\text { tosses come up on same side })=\frac{1}{4}+\frac{1}{4}=\frac{1}{2}
$$

- Some events can be described in terms of other events using set theory
- Union ("or")

$$
A \cup B=\{\omega \in \Omega: \omega \in A \text { or } \omega \in B\}
$$

- Intersection ("and")

$$
A \cap B=\{\omega \in \Omega: \omega \in A \text { and } \omega \in B\}
$$

- Complement ("not")

$$
A^{c}=\{\omega \in \Omega: \omega \notin A\}
$$

- Difference ("and not")

$$
A-B=\{\omega \in \Omega: \omega \in A \text { and } \omega \notin B\}
$$

(sometimes also written " $A \backslash B$ "; same as $A \cap B^{\text {c }}$)

- Example: roll a fair 6 -sided die twice
* $A=$ "first roll is even"
* $B=$ "second roll is at most 3 "
* $A^{\mathrm{c}}=$ "first roll is odd"
* $B^{\mathrm{c}}=$ "second roll is at least 4 "
* "first roll is even and second roll is at most 3 "

SO

$$
\operatorname{Pr}(A \cap B)=\frac{9}{36}=\frac{1}{4}
$$

* "first toss is even or second toss is at most 3 "

$$
\begin{aligned}
& A \cup B=\left(A^{\mathrm{C}} \cap B^{\mathrm{C}}\right)^{\mathrm{C}} \\
& =\Omega-\left(A^{\mathrm{c}} \cap B^{\mathrm{c}}\right)
\end{aligned}
$$

SO

$$
\operatorname{Pr}(A \cup B)=\frac{36-9}{36}=\frac{3}{4}
$$

Q. Suppose a 6 -sided die is weighted so that, for each $k \in\{1,2,3,4,5,6\}$, the side showing k pips is k times as likely to show up as the side showing 1 pip. What is the probability that a roll of this die shows an even number of pips?
Q. Suppose A and B are events from a probability space such that $\operatorname{Pr}(A \cap$ $B)=1 / 4, \operatorname{Pr}\left(A^{c}\right)=1 / 3$, and $\operatorname{Pr}(B)=1 / 2$. What is $\operatorname{Pr}(A \cup B)$?

1.3 Conditional probability

- Suppose, in an experiment described by probability space (Ω, m), you learn that an event E has occurred, but nothing else
- Exact outcome ω may not yet be known to you
- What probability space now models the experiment in light of the new information?
- Conditioning on E : incorporating information that E occurred
- New probability space $\left(\Omega, m_{E}\right)$ with probability function defined in terms of original:

$$
m_{E}(\omega)= \begin{cases}\frac{m(\omega)}{m(E)} & \text { if } \omega \in E \\ 0 & \text { if } \omega \notin E\end{cases}
$$

(We require $m(E)>0$ in order to define m_{E})

- Can check that m_{E} is a valid probability function on Ω
(Normalization is ensured by the division by $\operatorname{Pr}(E)$)
- Notation: write $\operatorname{Pr}(F \mid E)$ for probability of event F in probability space $\left(\Omega, m_{E}\right)$, a.k.a. probability of F conditioned on E, a.k.a. (conditional) probability of F given E
- Example: roll a fair 6-sided die
$-E=\{\odot, \because, \because\}=$ "even", $F=\{\odot, \odot, \because\}=$ "prime"
- Suppose you learn E occurred
* Given this information, what is probability of F ?

$$
\operatorname{Pr}(F \mid E)=\sum_{\omega \in F} m_{E}(\omega)=\sum_{\omega \in F \cap E} \frac{m(\omega)}{\operatorname{Pr}(E)}=\frac{1 / 6}{1 / 2}=\frac{1}{3}
$$

- Useful formula for conditional probability:

$$
\operatorname{Pr}(F \mid E) \operatorname{Pr}(E)=\operatorname{Pr}(F \cap E)
$$

- Bayes' rule: relates probabilities of event F before and after conditioning on information that event E occurs

$$
\operatorname{Pr}(F \mid E)=\operatorname{Pr}(F) \times \frac{\operatorname{Pr}(E \mid F)}{\operatorname{Pr}(E)}
$$

$-\operatorname{Pr}(F \mid E)$ is probability of F after conditioning on information that E occurred

- $\operatorname{Pr}(F)$ is probability of F in original probability space (before observing that E occurred)
- Ratio $\operatorname{Pr}(E \mid F) / \operatorname{Pr}(E)$ is what relates these probabilities
* Always non-negative, but can be zero (even if $\operatorname{Pr}(E)>0$)
* Whether it is more or less than 1 determines whether probability of F increases or decreases after incorporating information that E occurred
- Example: A casino has 100 identically-looking slot machines; but unbeknownst to you, the first 75 are "fair", and rest are "rigged". If you play on a "fair" machine, you are equally likely to win or lose. If you play on a "rigged" machine, you always lose.
Suppose you enter the casino, pick a slot machine uniformly at random, play it once, and lose. Given this information, what is the probability that you played on a "rigged" machine?
- Sample space: $\Omega=\{1,2, \ldots, 100\} \times\{$ win, lose $\}$ (Other choices could also work)
- Events of interest:

$$
\begin{aligned}
& * R=\{(a, b) \in \Omega: 76 \leq a \leq 100\} \\
& * L=\{(a, b) \in \Omega: b=\text { lose }\}
\end{aligned}
$$

- Probabilities of interest:

$$
\begin{aligned}
& * \operatorname{Pr}(R)=25 / 100, \operatorname{Pr}\left(R^{\mathrm{c}}\right)=75 / 100 \\
& * \operatorname{Pr}(L \mid R)=1, \operatorname{Pr}\left(L \mid R^{\mathrm{c}}\right)=1 / 2
\end{aligned}
$$

* We also need $\operatorname{Pr}(L)$:

$$
\begin{aligned}
\operatorname{Pr}(L) & =\operatorname{Pr}(L \cap R)+\operatorname{Pr}\left(L \cap R^{\mathrm{c}}\right) \\
& =\operatorname{Pr}(L \mid R) \times \operatorname{Pr}(R)+\operatorname{Pr}\left(L \mid R^{\mathrm{c}}\right) \times \operatorname{Pr}\left(R^{\mathrm{c}}\right) \\
& =1 \times \frac{25}{100}+\frac{1}{2} \times \frac{75}{100} \\
& =\frac{1}{4}+\frac{3}{8}=\frac{5}{8}
\end{aligned}
$$

- Using Bayes' rule:

$$
\begin{aligned}
\operatorname{Pr}(R \mid L) & =\operatorname{Pr}(R) \times \frac{\operatorname{Pr}(L \mid R)}{\operatorname{Pr}(L)} \\
& =\frac{1}{4} \times \frac{1}{5 / 8} \\
& =\frac{2}{5}=40 \%
\end{aligned}
$$

- Before playing the machine, 25% probability that picked machine is rigged; after playing machine and observing that you lost, the probability has increased to 40%
Q. In the casino example, suppose you play a randomly picked machine two times, and lose both times. What is probability that you picked a rigged machine, given this information?
Q. You repeatedly roll a fair 6 -sided die and stop after seeing 6 pips face up. Suppose only even numbers of pips show up in all rolls. What is the probability that the number of rolls is 1 , given this information?

1.4 Random variables

- Random variable X (on (Ω, m)) is a function that assigns a real number to each outcome in Ω
- Facilitates quantitative analysis of experiments modeled by probability spaces
- X defines probability space $\left(\mathbb{R}, p_{X}\right)$ with p_{X} defined by

$$
p_{X}(x)=\operatorname{Pr}(X=x)=\operatorname{Pr}(\{\omega \in \Omega: X(\omega)=x\})
$$

* p_{X} is the probability (mass) function for X
* Say p_{X} specifies the probability distribution of X
* Sample space is set of real numbers \mathbb{R}, but probability function p_{X} takes values 0 outside of range of X

$$
\operatorname{range}(X)=\{X(\omega): \omega \in \Omega\}
$$

* So can also regard sample space as range (X)
* Shorthand: " $X=x$ " means $\{\omega \in \Omega: X(\omega)=x\}$
- Example: toss a fair coin three times
* $X=$ number of heads

$X(\mathrm{TTT})$	$=0$		$X(\mathrm{TTH})=1$
$X(\mathrm{THT})$	$=1$		$X(\mathrm{THH})=2$
$X(\mathrm{HTT})$	$=1$		$X(\mathrm{HTH})=2$
$X(\mathrm{HHT})$	$=2$		$X(\mathrm{HHH})=3$
x	0	1	2

* Event "at least one heads" is also written as " $X \geq 1$ "

$$
\operatorname{Pr}(X \geq 1)=\frac{7}{8}
$$

- Example: roll a fair 6-sided die twice
* $X=$ number of pips from the first roll
* $Y=$ number of pips from the second roll
* $Z=X+Y$

$$
\begin{aligned}
& Z(\odot)=X(\odot \odot)+Y(\odot \odot)=1+1=2 \\
& Z(\odot \cdot)=X(\odot \cdot)+Y(\odot \odot)=1+2=3 \\
& Z(\odot \odot)=X(\odot)+Y(\odot \odot)=1+3=4 \\
& \text { etc. }
\end{aligned}
$$

- Expectation (a.k.a. expected value, mean, average) of random variable \bar{X} in probability space (Ω, m)

$$
\mathbb{E}(X)=\sum_{\omega \in \Omega} X(\omega) m(\omega)
$$

- Often more convenient to use equivalent formula

$$
\mathbb{E}(X)=\sum_{x} x \operatorname{Pr}(X=x)=\sum_{x} x p_{X}(x)
$$

(Summation is taken over $x \in \operatorname{range}(X)$)

- Example: roll a fair 6-sided die
* $X=$ number of pips

$$
\begin{aligned}
\mathbb{E}(X) & =\sum_{x=1}^{6} x p_{X}(x) \\
& =1 \times \frac{1}{6}+2 \times \frac{1}{6}+3 \times \frac{1}{6}+4 \times \frac{1}{6}+5 \times \frac{1}{6}+6 \times \frac{1}{6} \\
& =\frac{21}{6}=3.5
\end{aligned}
$$

- Example: toss a fair coin three times
* $X=$ number of heads

$$
\begin{aligned}
\mathbb{E}(X) & =\sum_{x=0}^{3} x p_{X}(x) \\
& =0 \times \frac{1}{8}+1 \times \frac{3}{8}+2 \times \frac{3}{8}+3 \times \frac{1}{8} \\
& =\frac{12}{8}=1.5
\end{aligned}
$$

- If X is a random variable, and $Y=a X+b$ for some real numbers a and b, then

$$
\mathbb{E}(Y)=\mathbb{E}(a X+b)=a \mathbb{E}(X)+b
$$

- Caution: not all random variables have an expectation
* Example: $p_{X}(x)=1 / x-1 /(x+1)$ for all positive integers x
- Beyond the expected value
- Random variables with same expected value can be very different
- Example:
* Toss fair coin 5 times; $X=$ number of heads, $\mathbb{E}(X)=2.5$
- $\operatorname{range}(X)=\{0,1,2,3,4,5\}$
- $|\{\omega \in \Omega: X(\omega) \in\{2,3\}\}|=20$
- $|\{\omega \in \Omega: X(\omega) \in\{0,1,4,5\}\}|=12$
- So values "close" to the expectation are more likely than those "far" from the expectation
* Roll a fair 6 -sided die; $Y=$ number of pips $-1, \mathbb{E}(Y)=2.5$
- All possible values $\{0,1,2,3,4,5\}$ of Y are equally likely, regardless of distance to the expectation
* X is less "spread out" than Y
- Variance: convenient measure of a random variable's "spread"

$$
\operatorname{var}(X)=\mathbb{E}\left((X-\mu)^{2}\right)
$$

where $\mu=\mathbb{E}(X)$

* The square-root of $\operatorname{var}(X)$-called standard deviation - is roughly how much X deviates from μ on average
- $\operatorname{stddev}(X)=\sqrt{\operatorname{var}(X)}$
- Caveat: $\sqrt{\mathbb{E}\left(X^{2}\right)}$ is not necessarily the same as $\mathbb{E}\left(\sqrt{X^{2}}\right)$
* $\mathbb{E}(|X-\mu|)$ is exactly how much X deviates from μ on average, but less convenient to work with mathematically
- If X is a random variable, and $Y=a X+b$ for some real numbers a and b, then

$$
\operatorname{var}(Y)=\operatorname{var}(a X+b)=\operatorname{var}(a X)=a^{2} \operatorname{var}(X)
$$

- There are many other "summary statistics" for random variables
Q. You repeatedly roll a fair 6 -sided die and stop after seeing 6 pips face up. What is the expected number of rolls?
Q. If X is the number of heads in 5 tosses of a fair coin, and Y is number of pips shown in the roll of a fair 6 -sided die, what are the variances of X and Y ?

1.5 Multiple random variables

- If each of X and Y is a random variable (on (Ω, m)), then (2-dimensional) random vector $Z=(X, Y)$ is a \mathbb{R}^{2}-valued function on Ω given by

$$
Z(\omega)=(X(\omega), Y(\omega))
$$

- Z defines probability space $\left(\mathbb{R}^{2}, p_{Z}\right)$ by

$$
p_{Z}(x, y)=\operatorname{Pr}(X=x \wedge Y=y)
$$

p_{Z} is joint probability function for (X, Y)

- Example: roll a fair 6 -sided die 10 times
* $X=$ number of rolls with 6 pips
* $Y=$ number of rolls with 5 pips
- Can generalize to n-tuples of random variables to get n-dimensional random vectors
- Useful fact: If X and Y are random variables (on (Ω, m)), then

$$
\mathbb{E}(X+Y)=\mathbb{E}(X)+\mathbb{E}(Y)
$$

i.e., expectation is additive

- Example: roll a fair 6-sided die 10 times
* $X=$ number of rolls with 6 pips
* $Y=$ number of rolls with 5 pips
$* \mathbb{E}(X+Y)=\mathbb{E}(X)+\mathbb{E}(Y)=5 / 3+5 / 3=10 / 3$
- Generalizes to sums of n random variables X_{1}, \ldots, X_{n}

$$
\mathbb{E}\left(X_{1}+\cdots+X_{n}\right)=\mathbb{E}\left(X_{1}\right)+\cdots+\mathbb{E}\left(X_{n}\right)
$$

and also linear combinations

$$
\mathbb{E}\left(a_{1} X_{1}+\cdots+a_{n} X_{n}\right)=a_{1} \mathbb{E}\left(X_{1}\right)+\cdots+a_{n} \mathbb{E}\left(X_{n}\right)
$$

i.e., expectation is linear

- Random variables X and Y are independent if, for all pairs of real numbers (x, y),

$$
\operatorname{Pr}(X=x \wedge Y=y)=\operatorname{Pr}(X=x) \times \operatorname{Pr}(Y=y)
$$

i.e.,

$$
p_{(X, Y)}(x, y)=p_{X}(x) p_{Y}(y) \quad \text { for all }(x, y)
$$

- Example: roll a fair 6-sided die
$* X= \begin{cases}1 & \text { if number of pips is at most } 4 \\ 0 & \text { otherwise }\end{cases}$

$$
p_{X}(0)=\frac{1}{3}, \quad p_{X}(1)=\frac{2}{3}
$$

$* Y= \begin{cases}1 & \text { if number of pips is even } \\ 0 & \text { otherwise }\end{cases}$

$$
p_{Y}(0)=p_{Y}(1)=\frac{1}{2}
$$

* Joint probability function

$$
\begin{array}{c||cccc}
(x, y) & (0,0) & (0,1) & (1,0) & (1,1) \\
\hline p_{(X, Y)}(x, y) & 1 / 6 & 1 / 6 & 1 / 3 & 1 / 3
\end{array}
$$

* Check that this satisfies $p_{(X, Y)}(x, y)=p_{X}(x) p_{Y}(y)$ for all (x, y)
* So X and Y are independent
* Note: Here, X and Y are special kinds of random variables called indicator random variables - each one indicates whether or not a particular event occurs
* Notation:

$$
\begin{aligned}
X & =\mathbb{1}\{\text { number of pips is at most } 4\} \\
Y & =\mathbb{1}\{\text { number of pips is even }\}
\end{aligned}
$$

* Distribution of an indicator random variable X is Bernoulli, written as $X \sim \operatorname{Bernoulli}(\theta)$, where $\theta=\operatorname{Pr}(X=1)$
- A non-example: roll a fair 6 -sided die 10 times
* $X=$ number of rolls with 6 pips
* $Y=$ number of rolls with 5 pips
* $\operatorname{Pr}(X=10 \wedge Y=10)=0$, yet

$$
\operatorname{Pr}(X=10)=\operatorname{Pr}(Y=10)>0
$$

* So X and Y are not independent
- Generalizes to n random variables: X_{1}, \ldots, X_{n} are independent if, for all n-tuples of real numbers $\left(x_{1}, \ldots, x_{n}\right)$,

$$
\operatorname{Pr}\left(X_{1}=x_{1} \wedge \cdots \wedge X_{n}=x_{n}\right)=\operatorname{Pr}\left(X_{1}=x_{1}\right) \times \cdots \times \operatorname{Pr}\left(X_{n}=x_{n}\right)
$$

Q. Roll a fair 6 -sided die; let X indicate if number of pips is at most 4, and let Y indicate if number of pips is even. Are X and Y independent?
Q. Toss a fair coin 10 times, and let X be the number times HTH appears as a substring of the outcome. What is the expected value of X ? (Hint: Write X as a sum of 8 indicator random variables, and use the linearity of expectation.)

1.6 Dependence

- Random variables that are not independent are said to be dependent
- Many different "types" of dependence
- Example: Roll a fair 6 -sided die n times; let X be the number of times a $: 0$ comes up; let Y be the number of times a $: 0$ or \because comes up; let Z be the number of times a
* The larger X is, the larger Y must be
* But the larger X or Y is, the smaller Z must be

- Say X and Y are positively correlated if $\mathbb{E}(X Y)>\mathbb{E}(X) \mathbb{E}(Y)$
- In die rolling example with $n=4$:

$$
\begin{aligned}
\mathbb{E}(X Y) & =4 / 3 \\
\mathbb{E}(X) & =2 / 3 \\
\mathbb{E}(Y) & =4 / 3 \\
\mathbb{E}(X) \mathbb{E}(Y) & =8 / 9
\end{aligned}
$$

So X and Y are positively correlated

- Say X and Y are negatively correlated if $\mathbb{E}(X Y)<\mathbb{E}(X) \mathbb{E}(Y)$
- Say X and Y are uncorrelated if $\mathbb{E}(X Y)=\mathbb{E}(X) \mathbb{E}(Y)$
- If X and Y are independent, then they are uncorrelated But converse is not necessarily true
- Example: toss a fair coin two times
* $X=$ number of heads
$* Y=\left\{\begin{aligned} 1 & \text { if first toss is heads and second toss is tails } \\ 0 & \text { if both tosses are the same } \\ -1 & \text { if first toss is tails and second toss is heads }\end{aligned}\right.$

$$
* \mathbb{E}(X)=1, \mathbb{E}(Y)=0, \mathbb{E}(X Y)=0
$$

* So X and Y are uncorrelated, but

$$
\frac{1}{4}=\operatorname{Pr}(X=0, Y=0) \neq \operatorname{Pr}(X=0) \times \operatorname{Pr}(Y=0)=\frac{1}{4} \times \frac{1}{2}=\frac{1}{8}
$$

- Also many different ways to "measure" dependence
- Covariance between X and Y is

$$
\begin{aligned}
\operatorname{cov}(X, Y) & =\mathbb{E}((X-\mathbb{E}(X))(Y-\mathbb{E}(Y))) \\
& =\mathbb{E}(X Y)-\mathbb{E}(X) \mathbb{E}(Y)
\end{aligned}
$$

- For any constants a, b, c, d,

$$
\operatorname{cov}(a X+b, c Y+d)=a c \operatorname{cov}(X, Y)
$$

- (Pearson's) correlation between X and Y is

$$
\operatorname{cor}(X, Y)=\frac{\operatorname{cov}(X, Y)}{\operatorname{stddev}(X) \operatorname{stddev}(Y)}
$$

- In die rolling example with $n=4$:

$$
\begin{aligned}
\operatorname{cov}(X, Z) & =-1 / 9, \quad \operatorname{var}(X)=\operatorname{var}(Z)=5 / 9 \\
\operatorname{cor}(X, Z) & =-1 / 5
\end{aligned}
$$

Q. If $\operatorname{var}(X+Y)=\operatorname{var}(X)+\operatorname{var}(Y)$, then what can you say about $\operatorname{cov}(X, Y) ?$
Q. If $X=Y$, then what is the value of $\operatorname{cor}(X, Y)$?
Q. Is it possible to have $\operatorname{cor}(X, Y)>1$? What about $\operatorname{cor}(X, Y)<-1$?

1.7 Marginal and conditional distributions

- Consider random variables X and Y (on (Ω, m))
- Marginal distribution of Y is the probability distribution given by

$$
p_{Y}(y)=\operatorname{Pr}(Y=y)=\operatorname{Pr}(\{\omega \in \Omega: Y(\omega)=y\})
$$

- Law of total probability:

$$
p_{Y}(y)=\operatorname{Pr}(Y=y)=\sum_{x} \operatorname{Pr}(X=x \wedge Y=y)=\sum_{x} p_{(X, Y)}(x, y)
$$

This process of summing $p_{(X, Y)}(x, y)$ over all possible values of X is called marginalization

- Conditional distribution of Y given $X=x$ is probability distribution $p_{Y \mid X=x}$ given by

$$
\begin{aligned}
p_{Y \mid X=x}(y) & =\operatorname{Pr}(Y=y \mid X=x) \\
& =\frac{\operatorname{Pr}(Y=y \wedge X=x)}{\operatorname{Pr}(X=x)}
\end{aligned}
$$

- Conditional expectation of Y given $X=x$ is

$$
\mathbb{E}(Y \mid X=x)=\sum_{y} y p_{Y \mid X=x}(y)
$$

- Example: roll a fair 6-sided die
* $X=\mathbb{1}\{$ number of pips is more than 4$\}$
* $Y=$ number of pips
* $\mathbb{E}(Y \mid X=0)=2.5$
* $\mathbb{E}(Y \mid X=1)=5.5$
* $Y^{\prime}=\mathbb{1}\{$ number of pips is even\}
* $\mathbb{E}\left(Y^{\prime} \mid X=0\right)=1 / 2$
* $\mathbb{E}\left(Y^{\prime} \mid X=1\right)=1 / 2$
* $X^{\prime}=\mathbb{1}\{$ number of pips is more than 3$\}$
* $\mathbb{E}\left(Y^{\prime} \mid X^{\prime}=0\right)=1 / 3$
* $\mathbb{E}\left(Y^{\prime} \mid X^{\prime}=1\right)=2 / 3$
- Regard $Z=\mathbb{E}(Y \mid X)$ as a random variable in probability space $\left(\mathbb{R}, p_{X}\right)$

$$
-Z(x)=\mathbb{E}(Y \mid X=x)
$$

- Expected value of $\mathbb{E}(Y \mid X)$ is

$$
\begin{aligned}
\mathbb{E}(\mathbb{E}(Y \mid X)) & =\sum_{x} \mathbb{E}(Y \mid X=x) p_{X}(x) \\
& =\sum_{x} \sum_{y} y p_{Y \mid X=x} p_{X}(x) \\
& =\sum_{x} \sum_{y} y p_{(X, Y)}(x, y) \\
& =\sum_{y} y p_{Y}(y) \\
& =\mathbb{E}(Y)
\end{aligned}
$$

This fact is called the tower property of conditional expectation
Q. Toss a fair coin two times; let

- $X=$ number of heads
$-Y=\left\{\begin{aligned} 1 & \text { if first toss is heads and second toss is tails } \\ 0 & \text { if both tosses are the same } \\ -1 & \text { if first toss is tails and second toss is heads }\end{aligned}\right.$
For each $x \in \operatorname{range}(X)$, what is the expected value of Y given $X=x$?

1.8 Continuous random variables

- So far, we have only considered discrete random variables (which have finite or countable ranges)
- Probability distribution of random variable X can be specified either by its probability mass function p_{X} or by its (cumulative) distribution function (cdf) cdf_{X}

$$
\operatorname{cdf}_{X}(x)=\operatorname{Pr}(X \leq x)
$$

- A random variable is continuous if its distribution function is a continuous function
- In some cases, these arise by starting with discrete distributions and taking an appropriate limit
- In this class, we'll only discuss continuous random variables X whose distribution functions can be written as

$$
\operatorname{cdf}_{X}(x)=\int_{-\infty}^{x} p_{X}(u) \mathrm{d} u
$$

for a function p_{X} called the (probability) density function (pdf)

- Important example: uniform (on unit interval) random variable

$$
p_{X}(x)= \begin{cases}1 & \text { if } 0 \leq x \leq 1 \\ 0 & \text { otherwise }\end{cases}
$$

- Notation: $X \sim \operatorname{Unif}([0,1])$
- For any subinterval $I \subseteq[0,1], \operatorname{Pr}(X \in I)$ is the length of the interval

Uniform (on unit square) random vector:

$$
p_{(X, Y)}(x, y)= \begin{cases}1 & \text { if } 0 \leq x \leq 1 \text { and } 0 \leq y \leq 1 \\ 0 & \text { otherwise }\end{cases}
$$

- Notation: $(X, Y) \sim \operatorname{Unif}\left([0,1]^{2}\right)$
- Can verify that X and Y are independent, and each of X and Y has marginal distribution $\operatorname{Unif}([0,1])$
- Another important example: a standard normal random variable has density function

$$
\phi(x)=\frac{1}{\sqrt{2 \pi}} \exp \left(-\frac{x^{2}}{2}\right)
$$

- More generally: a normal random variable with mean μ and variance σ^{2} has density function

$$
\phi_{\mu, \sigma^{2}}(x)=\frac{1}{\sqrt{2 \pi \sigma^{2}}} \exp \left(-\frac{(x-\mu)^{2}}{2 \sigma^{2}}\right)
$$

- Notation: " $X \sim \mathrm{~N}\left(\mu, \sigma^{2}\right)$ " means " X is a random variable with density function $\phi_{\mu, \sigma^{2}}$ "
- Fact: If $X \sim \mathrm{~N}(0,1)$ and $Y=\mu+\sigma X$, then $Y \sim \mathrm{~N}\left(\mu, \sigma^{2}\right)$ (Verify this using change-of-variable)

Q. What is the distribution function for $X \sim \operatorname{Unif}([0,1])$?

1.9 Two important theorems

- Law of Large Numbers (LLN): If X_{1}, X_{2}, \ldots is an infinite sequence of independent and identically distributed (i.i.d.) random variables with expectation μ, then

$$
\frac{1}{n} \sum_{i=1}^{n} X_{i} \longrightarrow \mu
$$

as $n \rightarrow \infty$
(We don't dwell upon the notions of convergence in this class)

- Central Limit Theorem (CLT): If X_{1}, X_{2}, \ldots is an infinite sequence of independent and identically distributed (i.i.d.) random variables with expectation μ and variance σ^{2}, then

$$
\frac{\sum_{i=1}^{n} X_{i}-\mu}{\sigma \sqrt{n}} \longrightarrow \mathrm{~N}(0,1)
$$

as $n \rightarrow \infty$

2 Review of linear algebra

2.1 Why linear algebra?

- Many machine learning methods represent data as vectors of numbers
- Many methods for statistical analysis is based on linear algebraic ideas (e.g., linearity)
- Descriptions and analyses of many machine learning methods use linear algebraic notations and concepts

2.2 Euclidean spaces

- Euclidean d-space, denoted \mathbb{R}^{d}, is the d-dimensional generalization of three-dimensional physical space
- A $\underline{d \text {-vector }} v \in \mathbb{R}^{d}$ is a d-tuple of real numbers

$$
v=\left(v_{1}, \ldots, v_{d}\right)
$$

(We omit " d-" from " d-vector" when clear from context)

- The i-th component (a.k.a. entry) of v is v_{i}
- Basic operations on d-vectors that produce d-vectors:
- Addition: for $u, v \in \mathbb{R}^{d}$,

$$
u+v=\left(u_{1}+v_{1}, \ldots, u_{d}+v_{d}\right) \in \mathbb{R}^{d}
$$

- Scalar multiplication: for $v \in \mathbb{R}^{d}$ and $c \in \mathbb{R}$,

$$
c v=\left(c v_{1}, \ldots, c v_{d}\right) \in \mathbb{R}^{d}
$$

- There is a special vector called the zero vector $0=(0, \ldots, 0)$
- Adding the zero vector to another vector v results in v
- Scaling the zero vector by a real number c results in the zero vector
- The $\underline{\text { norm }}$ (a.k.a. $\underline{\text { length })}$ of a vector $v \in \mathbb{R}^{d}$, denoted by $\|v\|$, is

$$
\|v\|=\sqrt{v_{1}^{2}+\cdots+v_{d}^{2}}
$$

- A unit vector is a vector with norm 1
- The inner product (a.k.a. dot product) between vectors $u, v \in \mathbb{R}^{d}$, denoted by $u^{\top} v($ or $\langle u, v\rangle)$, is

$$
u^{\top} v=u_{1} v_{1}+\cdots+u_{d} v_{d}
$$

- Interpretation: $u^{\top} v=\|u\|\|v\| \cos (\theta)$ where θ is the "angle" between u and v
- Note: $\|v\|=\sqrt{v^{\top} v}$
- Cauchy-Schwarz inequality: For any vectors $u, v \in \mathbb{R}^{d}$,

$$
u^{\top} v \leq\|u\|\|v\|
$$

with equality if and only if there is a real number $c \in \mathbb{R}$ such that $u=c v$

- Vectors $u, v \in \mathbb{R}^{d}$ are orthogonal if $u^{\top} v=0$ (shorthand: " $u \perp v$ ")
- A collection of vectors $v^{(1)}, \ldots, v^{(n)} \in \mathbb{R}^{d}$ is orthogonal if, for every $i \neq j, v^{(i)}$ and $v^{(j)}$ are orthogonal
- A collection of vectors is orthonormal if it is orthogonal and every vector in the collection is a unit vector
- Pythagorean theorem: If $v^{(1)}, \ldots, v^{(n)}$ is an orthogonal collection of vectors, then

$$
\left\|v^{(1)}+\cdots+v^{(n)}\right\|^{2}=\left\|v^{(1)}\right\|^{2}+\cdots+\left\|v^{(n)}\right\|^{2}
$$

Q. Show that the only vector with length zero is the zero vector.
Q. Show that the triangle inequality holds: for any $u, v \in \mathbb{R}^{d}$,

$$
\|u+v\| \leq\|u\|+\|v\| .
$$

2.3 Linear dependence

- A linear combination of a finite collection of vectors $v^{(1)}, \ldots, v^{(n)} \in \mathbb{R}^{d}$ is an expression that multiples each $v^{(i)}$ by a real number $c_{i} \in \mathbb{R}$, and then adds up the results:

$$
c_{1} v^{(1)}+\cdots+c_{n} v^{(n)}
$$

- A non-trivial linear combination of a finite collection of vectors $v^{(1)}, \ldots, v^{(n)} \in \mathbb{R}^{d}$ is a linear combination $c_{1} v^{(1)}+\cdots+c_{n} v^{(n)}$ where at least one of the $c^{(i)}$ is non-zero
- A collection of vectors is linearly dependent if there is a non-trivial linear combination of vectors from this collection that results in the zero vector
- A collection of vectors that is not linearly dependent is said to be linearly independent
Q. Suppose unit vectors $v^{(1)}, \ldots, v^{(n)}$ satisfy $\left|\left\langle v^{(i)}, v^{(j)}\right\rangle\right| \leq 1 / n$ for all $i \neq j$. Show that these vectors must be linearly independent.

2.4 Subspaces, dimension, and bases

- The span of a collection of vectors is the set of all linear combinations of any subset of vectors from this collection
- A subspace \mathcal{W} of \mathbb{R}^{d} is a collection of vectors from \mathbb{R}^{d} that is closed under addition and scalar multiplication and also contains the zero vector
- \mathbb{R}^{d} itself is a subspace of \mathbb{R}^{d}
- The dimension of a subspace \mathcal{W}, written $\operatorname{dim}(\mathcal{W})$, is the largest number k such that \mathcal{W} contains a linearly independent set of k vectors

$$
-\operatorname{dim}\left(\mathbb{R}^{d}\right)=d
$$

- A set of vector B from a subspace \mathcal{W} is a basis for \mathcal{W} if B is linearly independent and the span of B is \mathcal{W}
- Every basis for a subspace \mathcal{W} has the same number of vectors, and that number is the dimension of the subspace
- It is often useful to order the vectors in a basis $B=\left(b^{(1)}, \ldots, b^{(k)}\right)$, and such an ordered set of vectors is called an ordered basis
- The standard (coordinate) basis for \mathbb{R}^{d} is the ordered basis $\left(e^{(1)}, \ldots, e^{(d)}\right)$, where $e^{(i)}$ is the d-vector whose components are all zeros except for the i-th component, which has value one

2.5 Linear transformations and matrices

- A linear transformation $T: \mathbb{R}^{d} \rightarrow \mathbb{R}^{k}$ between the Euclidean spaces \mathbb{R}^{d} and \mathbb{R}^{k} is a function that satisfies the following two properties:
- Additivity: $T(u+v)=T(u)+T(v)$ for any $u, v \in \mathbb{R}^{d}$
- Homogeneity: $T(c v)=c T(v)$ for any $v \in \mathbb{R}^{d}$ and $c \in \mathbb{R}$
$($ Additivity $\&$ homogeneity $=\underline{\text { linearity }})$
- A $k \times d$ matrix A is a tableaux of $k d$ real numbers arranged in k rows and d columns

$$
A=\left[\begin{array}{ccc}
A_{1,1} & \cdots & A_{1, d} \\
\vdots & \ddots & \vdots \\
A_{k, 1} & \cdots & A_{k, d}
\end{array}\right]
$$

- The (i, j)-th component (a.k.a. $\underline{\text { entry }) ~ o f ~} A$ is $A_{i, j}$
- We may regard A has an ordered collection of k-vectors $a^{(1)}, \ldots, a^{(d)}$, one per column of A :

$$
A=\left[\begin{array}{ccc}
\uparrow & & \uparrow \\
a^{(1)} & \cdots & a^{(d)} \\
\downarrow & & \downarrow
\end{array}\right]
$$

- The (matrix-vector) product of $k \times d$ matrix A and d-vector $x=\left(x_{1}, \ldots, x_{d}\right)$, written $A x$, is the linear combination of columns $a^{(1)}, \ldots, a^{(d)} \in \mathbb{R}^{k}$ of A given by

$$
x_{1} a^{(1)}+\cdots+x_{d} a^{(d)}
$$

- Caution: a matrix-vector product $A x$ only makes sense if the number of columns of A equals the number of components of x
- The (matrix-matrix) product (a.k.a. matrix multiplication) of $k \times d$ matrix \bar{A} and $d \times p$ matrix B, written $\overline{A B}$, is the $k \times p$ matrix whose i-th column is the matrix-vector product of A and the i-th column of B

$$
A B=\left[\begin{array}{lll}
A b^{(1)} & \cdots & A b^{(p)}
\end{array}\right]
$$

- Caution: a matrix-matrix product $A B$ only makes sense if the number of columns of A equals the number of rows of B
- Matrix-vector product can be viewed as a special case of matrix multiplication by pretending a d-vector is a $d \times 1$ matrix
- Matrix multiplication is associative (i.e., $A(B C)=(A B) C$) and distributive (i.e., $A(B+C)=A B+A C$), but not commutative (i.e., it is possible that $A B \neq B A$)
- The transpose of $k \times d$ matrix A, written A^{\top} is the $d \times k$ matrix whose (i, j)-th component is $A_{j, i}$
- What is the "meaning" of A^{\top} ?
- For every $x \in \mathbb{R}^{d}$ and $y \in \mathbb{R}^{k}$, we have $\langle A x, y\rangle=\left\langle x, A^{\top} y\right\rangle$
- Relates certain angles in \mathbb{R}^{d} to certain angles in \mathbb{R}^{k}
- Special matrix-matrix product: outer product of k-vector $u \in \mathbb{R}^{k}$ and d-vector $v \in \mathbb{R}^{d}$, written $u v^{\top}$ (where v is treated as $d \times 1$ matrix, so v^{\top} is $1 \times d$ matrix, a.k.a. row vector)

$$
u v^{\top}=\left[\begin{array}{c}
u_{1} \\
\vdots \\
u_{k}
\end{array}\right]\left[\begin{array}{lll}
v_{1} & \cdots & v_{d}
\end{array}\right]=\left[\begin{array}{ccc}
u_{1} v_{1} & \cdots & u_{1} v_{d} \\
\vdots & \ddots & \vdots \\
u_{k} v_{1} & \cdots & u_{k} v_{d}
\end{array}\right]
$$

(Result is a $k \times d$ matrix)
Q. Show that, for any $k \times d$ matrix M, the transformation $T: \mathbb{R}^{d} \rightarrow \mathbb{R}^{k}$ given by $T(v)=M v$ is a linear transformation.
Q. Show that, for any linear transformation $T: \mathbb{R}^{d} \rightarrow \mathbb{R}^{k}$, there is a $k \times d$ matrix M such that $T(v)=M v$ for all $v \in \mathbb{R}^{d}$.

2.6 Orthogonal complements and projectors

- For a k-dimensional subspace \mathcal{W} of \mathbb{R}^{d}, the orthogonal complement of \mathcal{W}, written \mathcal{W}^{\perp}, is the set of all vectors v that are orthogonal to every vector in \mathcal{W}

$$
\mathcal{W}^{\perp}=\left\{v \in \mathbb{R}^{d}: v \perp w \text { for all } w \in \mathcal{W}\right\}
$$

- Sometimes write " $v \perp \mathcal{W}$ " to mean " $v \perp w$ for all $w \in \mathcal{W}$ "
- \mathcal{W}^{\perp} is also a subspace of \mathbb{R}^{d}
- For every $k \times d$ matrix A :
- Column space of A, denoted $\operatorname{CS}(A)$, is the span of columns of A
- Nullspace of A, denoted $\operatorname{NS}(A)$, is all $x \in \mathbb{R}^{d}$ such that $A x=0$
- Row space of A is $\operatorname{CS}\left(A^{\top}\right)$; left nullspace of A is $\operatorname{NS}\left(A^{\top}\right)$
- $\operatorname{CS}\left(A^{\top}\right)$ and $\mathrm{NS}(A)$ are subspaces of \mathbb{R}^{d}
- $\operatorname{CS}(A)$ and $\operatorname{NS}\left(A^{\top}\right)$ are subspaces of \mathbb{R}^{k}
- $\underline{\text { Rank }}$ of A is $\operatorname{dim}(\operatorname{CS}(A))$ and is also equal to $\operatorname{dim}\left(\operatorname{CS}\left(A^{\top}\right)\right)$
$-\operatorname{rank}(A)+\operatorname{dim}(\mathrm{NS}(A))=d$, and $\operatorname{rank}(A)+\operatorname{dim}\left(\mathrm{NS}\left(A^{\top}\right)\right)=k$
- $\operatorname{CS}\left(A^{\top}\right)$ and $\mathrm{NS}(A)$ are orthogonal complements of each other
- $\operatorname{CS}(A)$ and $\mathrm{NS}\left(A^{\top}\right)$ are orthogonal complements of each other
- A projection operator (a.k.a. projector) $P: \mathbb{R}^{d} \rightarrow \mathbb{R}^{d}$ is a linear transformation satisfying $\underline{\text { idempotency, i.e., }} P(v)=P(P(v))$ for all $v \in \mathbb{R}^{d}$
- For any subspace \mathcal{W} of \mathbb{R}^{d}, there is a projector $P: \mathbb{R}^{d} \rightarrow \mathbb{R}^{d}$, called the orthogonal projector (a.k.a. orthoprojector) to \mathcal{W}, such that

$$
P(v) \in \mathcal{W} \quad \text { and } \quad v-P(v) \in \mathcal{W}^{\perp}
$$

- If $\mathcal{W}=\operatorname{CS}(A)$ for a $k \times d$ matrix A, then $P(v)=A A^{\dagger} v$ for all $v \in \mathbb{R}^{d}$, where A^{\dagger} is Moore-Penrose pseudoinverse of A
* If $\operatorname{rank}(A)=d$, then $P(v)=A\left(A^{\top} A\right)^{-1} A^{\top}$

