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1 Review of probability theory

1.1 Why probability theory?

• Probability theory provides mathematical framework for reasoning about
prediction problems

• (Some alternatives: approximation theory, game theory, . . . )

• Basic idea: regard quantities you are uncertain about (e.g., quantities
you want to predict) as random variables defined on a probability space

• Starting from basic idea, can use probability theory to derive properties
of optimal predictions, characterize uncertainty of error rate estimates,
design and analyze learning algorithms, etc.

1.2 Probability spaces

• Goal: mathematical model for experiment with random outcomes

(E.g., coin tosses, dice rolls, roulette wheel spins, . . . )

• A (discrete) probability space (Ω,m) is comprised of a sample space Ω
and a probability (mass) function m

– Sample space Ω is the (finite or countable) set of possible outcomes

– An event is a subset of Ω

– Example: toss a coin

∗ Possible outcomes: Ω = {H,T}
∗ “heads” = {H}
∗ “tails” = {T}
∗ . . .

– Example: toss a coin twice

∗ Possible outcomes: Ω = {TT,TH,HT,HH}
∗ “both tails” = {TT}
∗ “at least one heads” = {TH,HT,HH}
∗ . . .
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2 1 REVIEW OF PROBABILITY THEORY

– Example: roll a 6-sided die

∗ Possible outcomes: Ω = { , , , , , }
∗ “odd” = { , , }
∗ “even” = { , , }
∗ “at most 3” = { , , }
∗ . . .

– Example: repeatedly roll a 6-sided die and stop after seeing a “6”

∗ Possible outcomes: Ω = { , , , , , , , , . . .}
∗ “one roll” = { }
∗ “two rolls” = { , , , , }
∗ . . .

– Probability (mass) function m is a function that assigns a real
number to each outcome in Ω in a way that satisfies

∗ m(ω) ≥ 0 for all ω ∈ Ω (non-negativity), and

∗
∑

ω∈Ωm(ω) = 1 (normalization)

– Probability of an event E ⊆ Ω in probability space (Ω,m) is

Pr(E) =
∑
ω∈E

m(ω)

(Notation unfortunately does not explicitly show (Ω,m))

– Sometimes we “abuse notation” by writing m(E) to mean Pr(E)

– Example: toss a fair coin twice

∗ m(ω) = 1/4 for every possible outcome ω

Pr(tosses come up on same side) =
1

4
+

1

4
=

1

2

• Some events can be described in terms of other events using set theory

– Union (“or”)

A ∪B = {ω ∈ Ω : ω ∈ A or ω ∈ B}

– Intersection (“and”)

A ∩B = {ω ∈ Ω : ω ∈ A and ω ∈ B}
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1 REVIEW OF PROBABILITY THEORY 3

– Complement (“not”)

Ac = {ω ∈ Ω : ω /∈ A}

– Difference (“and not”)

A−B = {ω ∈ Ω : ω ∈ A and ω /∈ B}

(sometimes also written “A \B”; same as A ∩Bc)

– Example: roll a fair 6-sided die twice

∗ A = “first roll is even”

∗ B = “second roll is at most 3”

∗ Ac = “first roll is odd”

∗ Bc = “second roll is at least 4”

∗ “first roll is even and second roll is at most 3”

A ∩B = { , , , , , , , , }

so

Pr(A ∩B) =
9

36
=

1

4
∗ “first toss is even or second toss is at most 3”

A ∪B = (Ac ∩Bc)c

= Ω− (Ac ∩Bc)

= Ω− { , , , , , , , , }

so

Pr(A ∪B) =
36− 9

36
=

3

4

Q. Suppose a 6-sided die is weighted so that, for each k ∈ {1, 2, 3, 4, 5, 6},
the side showing k pips is k times as likely to show up as the side
showing 1 pip. What is the probability that a roll of this die shows an
even number of pips?

Q. Suppose A and B are events from a probability space such that Pr(A∩
B) = 1/4, Pr(Ac) = 1/3, and Pr(B) = 1/2. What is Pr(A ∪B)?
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4 1 REVIEW OF PROBABILITY THEORY

1.3 Conditional probability

• Suppose, in an experiment described by probability space (Ω,m), you
learn that an event E has occurred, but nothing else

– Exact outcome ω may not yet be known to you

– What probability space now models the experiment in light of the
new information?

– Conditioning on E: incorporating information that E occurred

• New probability space (Ω,mE) with probability function defined in
terms of original:

mE(ω) =


m(ω)

m(E)
if ω ∈ E

0 if ω /∈ E

(We require m(E) > 0 in order to define mE)

• Can check that mE is a valid probability function on Ω

(Normalization is ensured by the division by Pr(E))

• Notation: write Pr(F | E) for probability of event F in probability
space (Ω,mE), a.k.a. probability of F conditioned on E, a.k.a. (condi-
tional) probability of F given E

• Example: roll a fair 6-sided die

– E = { , , } = “even”, F = { , , } = “prime”

– Suppose you learn E occurred

∗ Given this information, what is probability of F?

Pr(F | E) =
∑
ω∈F

mE(ω) =
∑

ω∈F∩E

m(ω)

Pr(E)
=

1/6

1/2
=

1

3

• Useful formula for conditional probability:

Pr(F | E) Pr(E) = Pr(F ∩ E)
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1 REVIEW OF PROBABILITY THEORY 5

• Bayes’ rule: relates probabilities of event F before and after condition-
ing on information that event E occurs

Pr(F | E) = Pr(F )× Pr(E | F )

Pr(E)

– Pr(F | E) is probability of F after conditioning on information
that E occurred

– Pr(F ) is probability of F in original probability space (before ob-
serving that E occurred)

– Ratio Pr(E | F )/Pr(E) is what relates these probabilities

∗ Always non-negative, but can be zero (even if Pr(E) > 0)

∗ Whether it is more or less than 1 determines whether probabil-
ity of F increases or decreases after incorporating information
that E occurred

• Example: A casino has 100 identically-looking slot machines; but un-
beknownst to you, the first 75 are “fair”, and rest are “rigged”. If you
play on a “fair” machine, you are equally likely to win or lose. If you
play on a “rigged” machine, you always lose.

Suppose you enter the casino, pick a slot machine uniformly at random,
play it once, and lose. Given this information, what is the probability
that you played on a “rigged” machine?

– Sample space: Ω = {1, 2, . . . , 100} × {win, lose}
(Other choices could also work)

– Events of interest:

∗ R = {(a, b) ∈ Ω : 76 ≤ a ≤ 100}
∗ L = {(a, b) ∈ Ω : b = lose}

– Probabilities of interest:

∗ Pr(R) = 25/100, Pr(Rc) = 75/100

∗ Pr(L | R) = 1, Pr(L | Rc) = 1/2
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6 1 REVIEW OF PROBABILITY THEORY

∗ We also need Pr(L):

Pr(L) = Pr(L ∩R) + Pr(L ∩Rc)

= Pr(L | R)× Pr(R) + Pr(L | Rc)× Pr(Rc)

= 1× 25

100
+

1

2
× 75

100

=
1

4
+

3

8
=

5

8

– Using Bayes’ rule:

Pr(R | L) = Pr(R)× Pr(L | R)

Pr(L)

=
1

4
× 1

5/8

=
2

5
= 40%

– Before playing the machine, 25% probability that picked machine
is rigged; after playing machine and observing that you lost, the
probability has increased to 40%

Q. In the casino example, suppose you play a randomly picked machine
two times, and lose both times. What is probability that you picked a
rigged machine, given this information?

Q. You repeatedly roll a fair 6-sided die and stop after seeing 6 pips face
up. Suppose only even numbers of pips show up in all rolls. What is
the probability that the number of rolls is 1, given this information?

1.4 Random variables

• Random variable X (on (Ω,m)) is a function that assigns a real number
to each outcome in Ω

– Facilitates quantitative analysis of experiments modeled by prob-
ability spaces

– X defines probability space (R, pX) with pX defined by

pX(x) = Pr(X = x) = Pr({ω ∈ Ω : X(ω) = x})
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1 REVIEW OF PROBABILITY THEORY 7

∗ pX is the probability (mass) function for X

∗ Say pX specifies the probability distribution of X

∗ Sample space is set of real numbers R, but probability function
pX takes values 0 outside of range of X

range(X) = {X(ω) : ω ∈ Ω}

∗ So can also regard sample space as range(X)

∗ Shorthand: “X = x” means {ω ∈ Ω : X(ω) = x}
– Example: toss a fair coin three times

∗ X = number of heads

X(TTT) = 0 X(TTH) = 1

X(THT) = 1 X(THH) = 2

X(HTT) = 1 X(HTH) = 2

X(HHT) = 2 X(HHH) = 3

x 0 1 2 3
pX(x) 1/8 3/8 3/8 1/8

∗ Event “at least one heads” is also written as “X ≥ 1”

Pr(X ≥ 1) =
7

8

– Example: roll a fair 6-sided die twice

∗ X = number of pips from the first roll

∗ Y = number of pips from the second roll

∗ Z = X + Y

Z( ) = X( ) + Y ( ) = 1 + 1 = 2

Z( ) = X( ) + Y ( ) = 1 + 2 = 3

Z( ) = X( ) + Y ( ) = 1 + 3 = 4

etc.

• Expectation (a.k.a. expected value, mean, average) of random variable
X in probability space (Ω,m)

E(X) =
∑
ω∈Ω

X(ω)m(ω)
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8 1 REVIEW OF PROBABILITY THEORY

– Often more convenient to use equivalent formula

E(X) =
∑
x

xPr(X = x) =
∑
x

x pX(x)

(Summation is taken over x ∈ range(X))

– Example: roll a fair 6-sided die

∗ X = number of pips

E(X) =
6∑

x=1

x pX(x)

= 1× 1

6
+ 2× 1

6
+ 3× 1

6
+ 4× 1

6
+ 5× 1

6
+ 6× 1

6

=
21

6
= 3.5

– Example: toss a fair coin three times

∗ X = number of heads

E(X) =
3∑

x=0

x pX(x)

= 0× 1

8
+ 1× 3

8
+ 2× 3

8
+ 3× 1

8

=
12

8
= 1.5

– If X is a random variable, and Y = aX + b for some real numbers
a and b, then

E(Y ) = E(aX + b) = aE(X) + b

– Caution: not all random variables have an expectation

∗ Example: pX(x) = 1/x− 1/(x+ 1) for all positive integers x

• Beyond the expected value

– Random variables with same expected value can be very different

– Example:
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1 REVIEW OF PROBABILITY THEORY 9

∗ Toss fair coin 5 times; X = number of heads, E(X) = 2.5

· range(X) = {0, 1, 2, 3, 4, 5}
· |{ω ∈ Ω : X(ω) ∈ {2, 3}}| = 20

· |{ω ∈ Ω : X(ω) ∈ {0, 1, 4, 5}}| = 12

· So values “close” to the expectation are more likely than
those “far” from the expectation

∗ Roll a fair 6-sided die; Y = number of pips− 1, E(Y ) = 2.5

· All possible values {0, 1, 2, 3, 4, 5} of Y are equally likely,
regardless of distance to the expectation

∗ X is less “spread out” than Y

– Variance: convenient measure of a random variable’s “spread”

var(X) = E((X − µ)2)

where µ = E(X)

∗ The square-root of var(X)—called standard deviation—is roughly
how much X deviates from µ on average

· stddev(X) =
√
var(X)

· Caveat:
√
E(X2) is not necessarily the same as E(

√
X2)

∗ E(|X−µ|) is exactly how much X deviates from µ on average,
but less convenient to work with mathematically

– If X is a random variable, and Y = aX + b for some real numbers
a and b, then

var(Y ) = var(aX + b) = var(aX) = a2 var(X)

– There are many other “summary statistics” for random variables

Q. You repeatedly roll a fair 6-sided die and stop after seeing 6 pips face
up. What is the expected number of rolls?

Q. If X is the number of heads in 5 tosses of a fair coin, and Y is number
of pips shown in the roll of a fair 6-sided die, what are the variances of
X and Y ?
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10 1 REVIEW OF PROBABILITY THEORY

1.5 Multiple random variables

• If each ofX and Y is a random variable (on (Ω,m)), then (2-dimensional)
random vector Z = (X, Y ) is a R2-valued function on Ω given by

Z(ω) = (X(ω), Y (ω))

– Z defines probability space (R2, pZ) by

pZ(x, y) = Pr(X = x ∧ Y = y)

pZ is joint probability function for (X, Y )

– Example: roll a fair 6-sided die 10 times

∗ X = number of rolls with 6 pips

∗ Y = number of rolls with 5 pips

– Can generalize to n-tuples of random variables to get n-dimensional
random vectors

• Useful fact: If X and Y are random variables (on (Ω,m)), then

E(X + Y ) = E(X) + E(Y )

i.e., expectation is additive

– Example: roll a fair 6-sided die 10 times

∗ X = number of rolls with 6 pips

∗ Y = number of rolls with 5 pips

∗ E(X + Y ) = E(X) + E(Y ) = 5/3 + 5/3 = 10/3

– Generalizes to sums of n random variables X1, . . . , Xn

E(X1 + · · ·+Xn) = E(X1) + · · ·+ E(Xn)

and also linear combinations

E(a1X1 + · · ·+ anXn) = a1 E(X1) + · · ·+ an E(Xn)

i.e., expectation is linear
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1 REVIEW OF PROBABILITY THEORY 11

• Random variables X and Y are independent if, for all pairs of real
numbers (x, y),

Pr(X = x ∧ Y = y) = Pr(X = x)× Pr(Y = y)

i.e.,
p(X,Y )(x, y) = pX(x)pY (y) for all (x, y)

– Example: roll a fair 6-sided die

∗ X =

{
1 if number of pips is at most 4

0 otherwise

pX(0) =
1

3
, pX(1) =

2

3

∗ Y =

{
1 if number of pips is even

0 otherwise

pY (0) = pY (1) =
1

2

∗ Joint probability function

(x, y) (0, 0) (0, 1) (1, 0) (1, 1)
p(X,Y )(x, y) 1/6 1/6 1/3 1/3

∗ Check that this satisfies p(X,Y )(x, y) = pX(x)pY (y) for all (x, y)

∗ So X and Y are independent

∗ Note: Here, X and Y are special kinds of random variables
called indicator random variables—each one indicates whether
or not a particular event occurs

∗ Notation:

X = 1{number of pips is at most 4}
Y = 1{number of pips is even}

∗ Distribution of an indicator random variable X is Bernoulli,
written as X ∼ Bernoulli(θ), where θ = Pr(X = 1)

– A non-example: roll a fair 6-sided die 10 times
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12 1 REVIEW OF PROBABILITY THEORY

∗ X = number of rolls with 6 pips

∗ Y = number of rolls with 5 pips

∗ Pr(X = 10 ∧ Y = 10) = 0, yet

Pr(X = 10) = Pr(Y = 10) > 0

∗ So X and Y are not independent

– Generalizes to n random variables: X1, . . . , Xn are independent if,
for all n-tuples of real numbers (x1, . . . , xn),

Pr(X1 = x1 ∧ · · · ∧Xn = xn) = Pr(X1 = x1)× · · · × Pr(Xn = xn)

Q. Roll a fair 6-sided die; let X indicate if number of pips is at most 4, and
let Y indicate if number of pips is even. Are X and Y independent?

Q. Toss a fair coin 10 times, and let X be the number times HTH appears
as a substring of the outcome. What is the expected value of X? (Hint:
Write X as a sum of 8 indicator random variables, and use the linearity
of expectation.)

1.6 Dependence

• Random variables that are not independent are said to be dependent

• Many different “types” of dependence

– Example: Roll a fair 6-sided die n times; let X be the number of
times a comes up; let Y be the number of times a or comes
up; let Z be the number of times a comes up

∗ The larger X is, the larger Y must be

∗ But the larger X or Y is, the smaller Z must be
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14 1 REVIEW OF PROBABILITY THEORY
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– Say X and Y are positively correlated if E(XY ) > E(X)E(Y )

– In die rolling example with n = 4:

E(XY ) = 4/3

E(X) = 2/3

E(Y ) = 4/3

E(X)E(Y ) = 8/9

So X and Y are positively correlated

– Say X and Y are negatively correlated if E(XY ) < E(X)E(Y )

– Say X and Y are uncorrelated if E(XY ) = E(X)E(Y )

– If X and Y are independent, then they are uncorrelated

But converse is not necessarily true

– Example: toss a fair coin two times

∗ X = number of heads

∗ Y =


1 if first toss is heads and second toss is tails

0 if both tosses are the same

−1 if first toss is tails and second toss is heads
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1 REVIEW OF PROBABILITY THEORY 15

∗ E(X) = 1, E(Y ) = 0, E(XY ) = 0

∗ So X and Y are uncorrelated, but

1

4
= Pr(X = 0, Y = 0) ̸= Pr(X = 0)×Pr(Y = 0) =

1

4
× 1

2
=

1

8

• Also many different ways to “measure” dependence

– Covariance between X and Y is

cov(X, Y ) = E((X − E(X))(Y − E(Y )))

= E(XY )− E(X)E(Y )

– For any constants a, b, c, d,

cov(aX + b, cY + d) = ac cov(X, Y )

– (Pearson’s) correlation between X and Y is

cor(X, Y ) =
cov(X, Y )

stddev(X) stddev(Y )

– In die rolling example with n = 4:

cov(X,Z) = −1/9, var(X) = var(Z) = 5/9

cor(X,Z) = −1/5

Q. If var(X + Y ) = var(X) + var(Y ), then what can you say about
cov(X, Y )?

Q. If X = Y , then what is the value of cor(X, Y )?

Q. Is it possible to have cor(X, Y ) > 1? What about cor(X, Y ) < −1?

1.7 Marginal and conditional distributions

• Consider random variables X and Y (on (Ω,m))

• Marginal distribution of Y is the probability distribution given by

pY (y) = Pr(Y = y) = Pr({ω ∈ Ω : Y (ω) = y})
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16 1 REVIEW OF PROBABILITY THEORY

– Law of total probability:

pY (y) = Pr(Y = y) =
∑
x

Pr(X = x ∧ Y = y) =
∑
x

p(X,Y )(x, y)

This process of summing p(X,Y )(x, y) over all possible values of X
is called marginalization

• Conditional distribution of Y given X = x is probability distribution
pY |X=x given by

pY |X=x(y) = Pr(Y = y | X = x)

=
Pr(Y = y ∧X = x)

Pr(X = x)

• Conditional expectation of Y given X = x is

E(Y | X = x) =
∑
y

y pY |X=x(y)

– Example: roll a fair 6-sided die

∗ X = 1{number of pips is more than 4}
∗ Y = number of pips

∗ E(Y | X = 0) = 2.5

∗ E(Y | X = 1) = 5.5

∗ Y ′ = 1{number of pips is even}
∗ E(Y ′ | X = 0) = 1/2

∗ E(Y ′ | X = 1) = 1/2

∗ X ′ = 1{number of pips is more than 3}
∗ E(Y ′ | X ′ = 0) = 1/3

∗ E(Y ′ | X ′ = 1) = 2/3

• Regard Z = E(Y | X) as a random variable in probability space (R, pX)

– Z(x) = E(Y | X = x)
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1 REVIEW OF PROBABILITY THEORY 17

– Expected value of E(Y | X) is

E(E(Y | X)) =
∑
x

E(Y | X = x) pX(x)

=
∑
x

∑
y

y pY |X=x pX(x)

=
∑
x

∑
y

y p(X,Y )(x, y)

=
∑
y

y pY (y)

= E(Y )

This fact is called the tower property of conditional expectation

Q. Toss a fair coin two times; let

– X = number of heads

– Y =


1 if first toss is heads and second toss is tails

0 if both tosses are the same

−1 if first toss is tails and second toss is heads

For each x ∈ range(X), what is the expected value of Y given X = x?

1.8 Continuous random variables

• So far, we have only considered discrete random variables (which have
finite or countable ranges)

– Probability distribution of random variable X can be specified
either by its probability mass function pX or by its (cumulative)
distribution function (cdf) cdfX

cdfX(x) = Pr(X ≤ x)

• A random variable is continuous if its distribution function is a contin-
uous function

– In some cases, these arise by starting with discrete distributions
and taking an appropriate limit
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18 1 REVIEW OF PROBABILITY THEORY

– In this class, we’ll only discuss continuous random variables X
whose distribution functions can be written as

cdfX(x) =

∫ x

−∞
pX(u) du

for a function pX called the (probability) density function (pdf)

• Important example: uniform (on unit interval) random variable

pX(x) =

{
1 if 0 ≤ x ≤ 1

0 otherwise

– Notation: X ∼ Unif([0, 1])

– For any subinterval I ⊆ [0, 1], Pr(X ∈ I) is the length of the
interval

Uniform (on unit square) random vector:

p(X,Y )(x, y) =

{
1 if 0 ≤ x ≤ 1 and 0 ≤ y ≤ 1

0 otherwise

– Notation: (X, Y ) ∼ Unif([0, 1]2)

– Can verify that X and Y are independent, and each of X and Y
has marginal distribution Unif([0, 1])

• Another important example: a standard normal random variable has
density function

ϕ(x) =
1√
2π

exp

(
−x2

2

)
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• More generally: a normal random variable with mean µ and variance
σ2 has density function

ϕµ,σ2(x) =
1√
2πσ2

exp

(
−(x− µ)2

2σ2

)
– Notation: “X ∼ N(µ, σ2)” means “X is a random variable with

density function ϕµ,σ2”

– Fact: If X ∼ N(0, 1) and Y = µ+ σX, then Y ∼ N(µ, σ2)

(Verify this using change-of-variable)
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20 1 REVIEW OF PROBABILITY THEORY
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Q. What is the distribution function for X ∼ Unif([0, 1])?

1.9 Two important theorems

• Law of Large Numbers (LLN): If X1, X2, . . . is an infinite sequence of
independent and identically distributed (i.i.d.) random variables with
expectation µ, then

1

n

n∑
i=1

Xi −→ µ

as n → ∞
(We don’t dwell upon the notions of convergence in this class)

• Central Limit Theorem (CLT): If X1, X2, . . . is an infinite sequence of
independent and identically distributed (i.i.d.) random variables with
expectation µ and variance σ2, then∑n

i=1Xi − µ

σ
√
n

−→ N(0, 1)

as n → ∞

COMS 4771 Fall 2023 Prerequisite Review Notes August 21, 2023



2 REVIEW OF LINEAR ALGEBRA 21

2 Review of linear algebra

2.1 Why linear algebra?

• Many machine learning methods represent data as vectors of numbers

• Many methods for statistical analysis is based on linear algebraic ideas
(e.g., linearity)

• Descriptions and analyses of many machine learning methods use linear
algebraic notations and concepts

2.2 Euclidean spaces

• Euclidean d-space, denoted Rd, is the d-dimensional generalization of
three-dimensional physical space

• A d-vector v ∈ Rd is a d-tuple of real numbers

v = (v1, . . . , vd)

(We omit “d-” from “d-vector” when clear from context)

– The i-th component (a.k.a. entry) of v is vi

• Basic operations on d-vectors that produce d-vectors:

– Addition: for u, v ∈ Rd,

u+ v = (u1 + v1, . . . , ud + vd) ∈ Rd

– Scalar multiplication: for v ∈ Rd and c ∈ R,

cv = (cv1, . . . , cvd) ∈ Rd

• There is a special vector called the zero vector 0 = (0, . . . , 0)

– Adding the zero vector to another vector v results in v

– Scaling the zero vector by a real number c results in the zero vector
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• The norm (a.k.a. length) of a vector v ∈ Rd, denoted by ∥v∥, is

∥v∥ =
√

v21 + · · ·+ v2d

– A unit vector is a vector with norm 1

• The inner product (a.k.a. dot product) between vectors u, v ∈ Rd, de-
noted by uTv (or ⟨u, v⟩), is

uTv = u1v1 + · · ·+ udvd

– Interpretation: uTv = ∥u∥∥v∥ cos(θ) where θ is the “angle” be-
tween u and v

– Note: ∥v∥ =
√
vTv

• Cauchy-Schwarz inequality : For any vectors u, v ∈ Rd,

uTv ≤ ∥u∥∥v∥,

with equality if and only if there is a real number c ∈ R such that
u = cv

• Vectors u, v ∈ Rd are orthogonal if uTv = 0 (shorthand: “u ⊥ v”)

– A collection of vectors v(1), . . . , v(n) ∈ Rd is orthogonal if, for every

i ̸= j, v(i) and v(j) are orthogonal

– A collection of vectors is orthonormal if it is orthogonal and every
vector in the collection is a unit vector

• Pythagorean theorem: If v(1), . . . , v(n) is an orthogonal collection of vec-
tors, then

∥v(1) + · · ·+ v(n)∥2 = ∥v(1)∥2 + · · ·+ ∥v(n)∥2

Q. Show that the only vector with length zero is the zero vector.

Q. Show that the triangle inequality holds: for any u, v ∈ Rd,

∥u+ v∥ ≤ ∥u∥+ ∥v∥.
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2.3 Linear dependence

• A linear combination of a finite collection of vectors v(1), . . . , v(n) ∈ Rd

is an expression that multiples each v(i) by a real number ci ∈ R, and
then adds up the results:

c1v
(1) + · · ·+ cnv

(n)

– A non-trivial linear combination of a finite collection of vectors

v(1), . . . , v(n) ∈ Rd is a linear combination c1v
(1)+ · · ·+cnv

(n) where
at least one of the c(i) is non-zero

• A collection of vectors is linearly dependent if there is a non-trivial
linear combination of vectors from this collection that results in the
zero vector

– A collection of vectors that is not linearly dependent is said to be
linearly independent

Q. Suppose unit vectors v(1), . . . , v(n) satisfy |⟨v(i), v(j)⟩| ≤ 1/n for all i ̸= j.
Show that these vectors must be linearly independent.

2.4 Subspaces, dimension, and bases

• The span of a collection of vectors is the set of all linear combinations
of any subset of vectors from this collection

• A subspace W of Rd is a collection of vectors from Rd that is closed under
addition and scalar multiplication and also contains the zero vector

– Rd itself is a subspace of Rd

• The dimension of a subspaceW , written dim(W), is the largest number
k such that W contains a linearly independent set of k vectors

– dim(Rd) = d

• A set of vector B from a subspace W is a basis for W if B is linearly
independent and the span of B is W
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– Every basis for a subspace W has the same number of vectors, and
that number is the dimension of the subspace

– It is often useful to order the vectors in a basis B = (b(1), . . . , b(k)),
and such an ordered set of vectors is called an ordered basis

– The standard (coordinate) basis for Rd is the ordered basis (e(1), . . . , e(d)),

where e(i) is the d-vector whose components are all zeros except
for the i-th component, which has value one

2.5 Linear transformations and matrices

• A linear transformation T : Rd → Rk between the Euclidean spaces Rd

and Rk is a function that satisfies the following two properties:

– Additivity : T (u+ v) = T (u) + T (v) for any u, v ∈ Rd

– Homogeneity : T (cv) = cT (v) for any v ∈ Rd and c ∈ R

(Additivity & homogeneity = linearity)

• A k × d matrix A is a tableaux of kd real numbers arranged in k rows
and d columns

A =

A1,1 · · · A1,d
... . . . ...

Ak,1 · · · Ak,d


– The (i, j)-th component (a.k.a. entry) of A is Ai,j

– Wemay regardA has an ordered collection of k-vectors a(1), . . . , a(d),
one per column of A:

A =

 ↑ ↑
a(1) · · · a(d)

↓ ↓


• The (matrix-vector) product of k×dmatrixA and d-vector x = (x1, . . . , xd),

written Ax, is the linear combination of columns a(1), . . . , a(d) ∈ Rk of
A given by

x1a
(1) + · · ·+ xda

(d)

– Caution: a matrix-vector product Ax only makes sense if the num-
ber of columns of A equals the number of components of x
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• The (matrix-matrix) product (a.k.a. matrix multiplication) of k×d ma-
trix A and d× p matrix B, written AB, is the k× p matrix whose i-th
column is the matrix-vector product of A and the i-th column of B

AB =
[
Ab(1) · · · Ab(p)

]
– Caution: a matrix-matrix product AB only makes sense if the

number of columns of A equals the number of rows of B

– Matrix-vector product can be viewed as a special case of matrix
multiplication by pretending a d-vector is a d× 1 matrix

• Matrix multiplication is associative (i.e., A(BC) = (AB)C) and dis-
tributive (i.e., A(B +C) = AB +AC), but not commutative (i.e., it is
possible that AB ̸= BA)

• The transpose of k× d matrix A, written AT is the d× k matrix whose
(i, j)-th component is Aj,i

– What is the “meaning” of AT?

– For every x ∈ Rd and y ∈ Rk, we have ⟨Ax, y⟩ = ⟨x,ATy⟩
– Relates certain angles in Rd to certain angles in Rk

• Special matrix-matrix product: outer product of k-vector u ∈ Rk and
d-vector v ∈ Rd, written uvT (where v is treated as d× 1 matrix, so vT

is 1× d matrix, a.k.a. row vector)

uvT =

u1...
uk

 [
v1 · · · vd

]
=

u1v1 · · · u1vd
... . . . ...

ukv1 · · · ukvd


(Result is a k × d matrix)

Q. Show that, for any k × d matrix M , the transformation T : Rd → Rk

given by T (v) = Mv is a linear transformation.

Q. Show that, for any linear transformation T : Rd → Rk, there is a k × d
matrix M such that T (v) = Mv for all v ∈ Rd.
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2.6 Orthogonal complements and projectors

• For a k-dimensional subspace W of Rd, the orthogonal complement of
W , written W⊥, is the set of all vectors v that are orthogonal to every
vector in W

W⊥ = {v ∈ Rd : v ⊥ w for all w ∈ W}

– Sometimes write “v ⊥ W” to mean “v ⊥ w for all w ∈ W”

– W⊥ is also a subspace of Rd

• For every k × d matrix A:

– Column space of A, denoted CS(A), is the span of columns of A

– Nullspace of A, denoted NS(A), is all x ∈ Rd such that Ax = 0

– Row space of A is CS(AT); left nullspace of A is NS(AT)

– CS(AT) and NS(A) are subspaces of Rd

– CS(A) and NS(AT) are subspaces of Rk

– Rank of A is dim(CS(A)) and is also equal to dim(CS(AT))

– rank(A) + dim(NS(A)) = d, and rank(A) + dim(NS(AT)) = k

– CS(AT) and NS(A) are orthogonal complements of each other

– CS(A) and NS(AT) are orthogonal complements of each other

• A projection operator (a.k.a. projector) P : Rd → Rd is a linear trans-
formation satisfying idempotency, i.e., P (v) = P (P (v)) for all v ∈ Rd

• For any subspace W of Rd, there is a projector P : Rd → Rd, called the
orthogonal projector (a.k.a. orthoprojector) to W , such that

P (v) ∈ W and v − P (v) ∈ W⊥

– If W = CS(A) for a k × d matrix A, then P (v) = AA†v for all
v ∈ Rd, where A† is Moore-Penrose pseudoinverse of A

∗ If rank(A) = d, then P (v) = A(ATA)−1AT
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