Inductive bias and regularization
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Minimum norm solutions



Normal equations (A" A)w = A"b can have infinitely-many solutions

() = (1,cos(x),sin(x),cos(2x) sin(2z) cos(32x) sin(32z)

2 72 7732

{ —— arbitrary solution

¢ data
—— minimum norm solution
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Norm of w is a measure of “steepness”

[wTp(x) — wTp(@)] < flwll % [lo) — ()]
changeanoutput chang;a input

(Cauchy-Schwarz inequality)

» Note: Data does not provide a reason to prefer short w over long w

» Preference for short w is example of inductive bias (tie-breaking rule)
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Ridge regression



Ridge regression: “balance” two concerns by minimizing

[ Aw = B|J* + Alfwl|*

where A > 0 is hyperparameter

» Concern 1: “data fitting term” ||Aw — b||? (involves training data)
» Concern 2: regularizer \||w|* (doesn’t involve training data)

» )\ = 0 corresponds to objective in OLS

» )\ — 0" gives minimum norm solution
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e data
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{ —— ridge regression (A =1)
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Example: n = d = 100, ((X@,Y®))r, " (X,Y), where X ~ N(0, 1), and

conditional distribution of Y given X =z is N(Z]m:l zj, 1)
» Normal equations have unique solution, but OLS performs poorly
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Different interpretation of ridge regression objective

[Aw = BlJ* + AfJw]®
= || Aw = 0]* + [(VAI)w — 0]

» Second term is MSE on d additional “fake examples”

($(n+1), y(n—i-l))

($(n—&—2)7 y(n+2)) —

(x(n+d) (n+d))

Y
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“Augmented” dataset in matrix notation:

_<_ (SU(I))T _>- -y(l)-
A= (n+1)\T , b=

— (x r— 0

| — (I("+d))r — i 0 |

SO " ~
lAw = b]I* + AMwl|* = || Aw — b]*

What are “normal equations” for ridge regression objective (in terms of A, l~))7
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Other forms of regularization



Regularization using domain-specific data augmentation

Create “fake examples” from existing data by applying transformations that do
not change appropriateness of corresponding label, e.g.,

» Image data: rotations, rescaling
» Audio data: change playback rate

» Text data: replace words with synonyms
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Functional penalties (e.g., norm on w)

» Ridge: (squared) ¢* norm
ol

» Lasso: /! norm .
lwlly = |w;]
=1

» Sparse regularization: ° “norm” (not really a norm)

|lw|lo = # coefficients in w that are non-zero
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Example: n = d = 100, (X®,Y®))r, " (X,Y), where X ~ N(0,I), and
conditional distribution of Y given X =z is N(Z]m:l z;,1)

» Minimize ||Aw — b||* + A|jw]||; (Lasso)

—»— training MSE
101 true MSE

MSE
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Weighted (squared) ¢% norm:

d
E C; UJZQ
=1

for some “costs” ¢1,...,cq4 >0

» Motivation: make it more “costly” (in regularizer) to use certain features
» Where do costs come from?
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Example:

o(x) = (1, cos(z),sin(x), cos(2z), sin(2x), . . ., cos(32x), sin(32z))

with regularizer on w = (Wo, Weos 1, Wsin 15 - - - » Weos, 32, Wsin,32)
d
2 Z 2 2 2
Wy + ] X (wcos,j + wsin,j)
=1

(More expensive to use “high frequency” features)
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Question: Can effect of costs be achieved using (original) ridge regularization by
changing ¢?
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Margins and support vector machines



Many linear classifiers with same training error rate
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Possible inductive bias: largest “margin”, i.e., most “wiggle room”
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For notational convenience, use ) = {—1, 1} instead of ) = {0,1}
> fus(z) =sign(w'z +b)
» fus(z) =1y can be written as

y(w'z+b) >0
» If it is possible to satisfy
y(w'z +b) >0 forall (z,y) €8,
then can rescale w and b so that
min_ y(w'x +b) =1

(z,y)€8
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Say linear classifier f,; achieves margin v on example (x,y) if:
> fw,b(x) =Y
» Distance from x to decision boundary of f,; is v

Say fuw achieves margin 7 on dataset 8 if it achieves margin at least v on every
example (z,y) € 8

» le., vis “worst” margin achieved on a training example
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How to find linear classifier f,,; with largest margin on dataset S?
Let z € span{w} N Hy

For (z,y) € 8 satisfying y(w'x + b) = 1, let & be
orthoprojection of x to span{w}, so

wr+b=wI+b=y

Therefore
lw'(T — 2)| =

So distance from x to H, is
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How to find linear classifier f,,; with largest margin on dataset S?

Solution: find (w,b) € R? x R that satisfy

min_ y(w'x +b) =1
(z,y)€8

1
and that maximizes ——
[Jw]|
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Support Vector Machine (SVM) optimization problem

' u?
min —|lw
(wp)ERIXR 2

st. yw'x+b)>1 forall (z,y) €S

(Recall, labels are from {—1, 1} instead of {0, 1} here)

Examples (z,y) € 8 for which y(w"z + b) = 1 are called support vectors
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Iris dataset, treating versicolor and virginica as a single class, using features

x1 = sepal width, T9 = petal width
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Soft-margin SVM: for datasets that are not linearly separable

. 1 .
min 5|yw||2+c > [L—ywz+b),

(w,b)ERIXR s
where [z]; = max{0, z} (and C' > 0 is hyperparameter)
Term in summation corresponding to (z,y) € 8:

» Zero if y(w'z +0b) > 1

» Otherwise, proportional to distance that x must be moved in order to satisfy
y(w'z+b) =1
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Synthetic example with normal feature vectors

» Two classes; class 0: N((0,0), 1), class 1: N((2,2),1)

» 200 training data from each class

» Solved soft-margin SVM problem with C' = 10 to obtain (w, b)
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