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Minimum norm solutions



Normal equations (ATA)w = ATb can have infinitely-many solutions

φ(x) =

(
1, cos(x), sin(x),

cos(2x)

2
,
sin(2x)

2
, . . . ,

cos(32x)

32
,
sin(32x)

32

)
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Norm of w is a measure of “steepness”

|wTφ(x)− wTφ(x′)|︸ ︷︷ ︸
change in output

≤ ∥w∥ × ∥φ(x)− φ(x′)∥︸ ︷︷ ︸
change in input

(Cauchy-Schwarz inequality)

▶ Note: Data does not provide a reason to prefer short w over long w

▶ Preference for short w is example of inductive bias (tie-breaking rule)
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Ridge regression



Ridge regression: “balance” two concerns by minimizing

∥Aw − b∥2 + λ∥w∥2

where λ ≥ 0 is hyperparameter

▶ Concern 1: “data fitting term” ∥Aw − b∥2 (involves training data)

▶ Concern 2: regularizer λ∥w∥2 (doesn’t involve training data)

▶ λ = 0 corresponds to objective in OLS

▶ λ→ 0+ gives minimum norm solution
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Example: n = d = 100, ((X(i), Y (i)))ni=1
i.i.d.∼ (X, Y ), where X ∼ N(0, I), and

conditional distribution of Y given X = x is N(
∑10

j=1 xj, 1)
▶ Normal equations have unique solution, but OLS performs poorly
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Different interpretation of ridge regression objective

∥Aw − b∥2 + λ∥w∥2

= ∥Aw − b∥2 + ∥(
√
λI)w − 0∥2

▶ Second term is MSE on d additional “fake examples”

(x(n+1), y(n+1)) =

(x(n+2), y(n+2)) =

...

(x(n+d), y(n+d)) =
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“Augmented” dataset in matrix notation:

Ã =



←− (x(1))T −→
...

←− (x(n))T −→
←− (x(n+1))T −→

...
←− (x(n+d))T −→


, b̃ =



y(1)

...
y(n)

0
...
0


so

∥Aw − b∥2 + λ∥w∥2 = ∥Ãw − b̃∥2

What are “normal equations” for ridge regression objective (in terms of Ã, b̃)?
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Other forms of regularization



Regularization using domain-specific data augmentation

Create “fake examples” from existing data by applying transformations that do
not change appropriateness of corresponding label, e.g.,

▶ Image data: rotations, rescaling

▶ Audio data: change playback rate

▶ Text data: replace words with synonyms
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Functional penalties (e.g., norm on w)

▶ Ridge: (squared) ℓ2 norm
∥w∥2

▶ Lasso: ℓ1 norm

∥w∥1 =
d∑

j=1

|wj|

▶ Sparse regularization: ℓ0 “norm” (not really a norm)

∥w∥0 = # coefficients in w that are non-zero
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Example: n = d = 100, ((X(i), Y (i)))ni=1
i.i.d.∼ (X, Y ), where X ∼ N(0, I), and

conditional distribution of Y given X = x is N(
∑10

j=1 xj, 1)

▶ Minimize ∥Aw − b∥2 + λ∥w∥1 (Lasso)
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Weighted (squared) ℓ2 norm:
d∑

i=1

ci w
2
i

for some “costs” c1, . . . , cd ≥ 0

▶ Motivation: make it more “costly” (in regularizer) to use certain features

▶ Where do costs come from?
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Example:

φ(x) = (1, cos(x), sin(x), cos(2x), sin(2x), . . . , cos(32x), sin(32x))

with regularizer on w = (w0, wcos,1, wsin,1, . . . , wcos,32, wsin,32)

w2
0 +

d∑
j=1

j2 ×
(
w2

cos,j + w2
sin,j

)
(More expensive to use “high frequency” features)
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Question: Can effect of costs be achieved using (original) ridge regularization by
changing φ?
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Margins and support vector machines



Many linear classifiers with same training error rate
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Possible inductive bias: largest “margin”, i.e., most “wiggle room”
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For notational convenience, use Y = {−1, 1} instead of Y = {0, 1}
▶ fw,b(x) = sign(wTx+ b)

▶ fw,b(x) = y can be written as

y(wTx+ b) > 0

▶ If it is possible to satisfy

y(wTx+ b) > 0 for all (x, y) ∈ S,

then can rescale w and b so that

min
(x,y)∈S

y(wTx+ b) = 1
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Say linear classifier fw,b achieves margin γ on example (x, y) if:

▶ fw,b(x) = y

▶ Distance from x to decision boundary of fw,b is γ

Say fw,b achieves margin γ on dataset S if it achieves margin at least γ on every
example (x, y) ∈ S

▶ I.e., γ is “worst” margin achieved on a training example
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How to find linear classifier fw,b with largest margin on dataset S?

w

x

Hw,b

x̃

z

Let z ∈ span{w} ∩Hw,b

For (x, y) ∈ S satisfying y(wTx+ b) = 1, let x̃ be
orthoprojection of x to span{w}, so

wTx+ b = wTx̃+ b = y

Therefore
|wT(x̃− z)| =

So distance from x to Hw,b is
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How to find linear classifier fw,b with largest margin on dataset S?

Solution: find (w, b) ∈ Rd × R that satisfy

min
(x,y)∈S

y(wTx+ b) = 1

and that maximizes
1

∥w∥
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Support Vector Machine (SVM) optimization problem

min
(w,b)∈Rd×R

1

2
∥w∥2

s.t. y(wTx+ b) ≥ 1 for all (x, y) ∈ S

(Recall, labels are from {−1, 1} instead of {0, 1} here)

Examples (x, y) ∈ S for which y(wTx+ b) = 1 are called support vectors
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Iris dataset, treating versicolor and virginica as a single class, using features

x1 = sepal width, x2 = petal width
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Soft-margin SVM: for datasets that are not linearly separable

min
(w,b)∈Rd×R

1

2
∥w∥2 + C

∑
(x,y)∈S

[1− y(wTx+ b)]+

where [z]+ = max{0, z} (and C > 0 is hyperparameter)

Term in summation corresponding to (x, y) ∈ S:

▶ Zero if y(wTx+ b) ≥ 1

▶ Otherwise, proportional to distance that x must be moved in order to satisfy
y(wTx+ b) = 1
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Synthetic example with normal feature vectors

▶ Two classes; class 0: N((0, 0), I), class 1: N((2, 2), I)

▶ 200 training data from each class

▶ Solved soft-margin SVM problem with C = 10 to obtain (w, b)
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