Inductive bias and regularization

COMS 4771 Fall 2023

Minimum norm solutions
Normal equations \((A^T A)w = A^T b\) can have infinitely-many solutions

\[
\phi(x) = (1, \cos(x), \sin(x), \frac{\cos(2x)}{2}, \frac{\sin(2x)}{2}, \ldots, \frac{\cos(32x)}{32}, \frac{\sin(32x)}{32})
\]

Norm of \(w\) is a measure of “steepness”

\[
\|w^T \phi(x) - w^T \phi(x')\| \leq \|w\| \times \|\phi(x) - \phi(x')\|
\]

(Cauchy-Schwarz inequality)

- Note: Data does not provide a reason to prefer short \(w\) over long \(w\)
- Preference for short \(w\) is example of inductive bias (tie-breaking rule)
Ridge regression: “balance” two concerns by minimizing

\[\|Aw - b\|^2 + \lambda \|w\|^2 \]

where \(\lambda \geq 0 \) is hyperparameter

- **Concern 1:** “data fitting term” \(\|Aw - b\|^2 \) (involves training data)
- **Concern 2:** regularizer \(\lambda \|w\|^2 \) (doesn’t involve training data)
- \(\lambda = 0 \) corresponds to objective in OLS
- \(\lambda \to 0^+ \) gives minimum norm solution
Example: $n = d = 100$, $((X^{(i)}, Y^{(i)}))_{i=1}^{n}$ i.i.d. (X,Y), where $X \sim N(0, I)$, and conditional distribution of Y given $X = x$ is $N\left(\sum_{j=1}^{10} x_j, 1\right)$

- Normal equations have unique solution, but OLS performs poorly
Different interpretation of ridge regression objective

\[\|Aw - b\|^2 + \lambda\|w\|^2 \]
\[= \|Aw - b\|^2 + \|(\sqrt{\lambda}I)w - 0\|^2 \]

- Second term is MSE on \(d \) additional “fake examples"

\[
(x^{(n+1)}, y^{(n+1)}) = \\
(x^{(n+2)}, y^{(n+2)}) = \\
\vdots \\
(x^{(n+d)}, y^{(n+d)}) =
\]

“Augmented” dataset in matrix notation:

\[
\tilde{A} = \begin{bmatrix}
\leftarrow (x^{(1)})^\top & \rightarrow \\
\vdots & \vdots \\
\leftarrow (x^{(n)})^\top & \rightarrow \\
\leftarrow (x^{(n+1)})^\top & \rightarrow \\
\vdots & \vdots \\
\leftarrow (x^{(n+d)})^\top & \rightarrow
\end{bmatrix}, \quad \tilde{b} = \begin{bmatrix}
y^{(1)} \\
\vdots \\
y^{(n)} \\
0 \\
\vdots \\
0
\end{bmatrix}
\]

so

\[\|Aw - b\|^2 + \lambda\|w\|^2 = \|\tilde{A}w - \tilde{b}\|^2 \]

What are “normal equations” for ridge regression objective (in terms of \(\tilde{A}, \tilde{b} \))?
Other forms of regularization

Regularization using **domain-specific data augmentation**

Create “fake examples” from existing data by applying transformations that do not change appropriateness of corresponding label, e.g.,

- Image data: rotations, rescaling
- Audio data: change playback rate
- Text data: replace words with synonyms
Functional penalties (e.g., norm on w)

- Ridge: (squared) ℓ^2 norm
 \[\|w\|^2 \]

- Lasso: ℓ^1 norm
 \[\|w\|_1 = \sum_{j=1}^{d} |w_j| \]

- Sparse regularization: ℓ^0 “norm” (not really a norm)
 \[\|w\|_0 = \# \text{ coefficients in } w \text{ that are non-zero} \]

Example:

$n = d = 100$, $((X^{(i)}, Y^{(i)}))_{i=1}^{n}$ i.i.d. (X, Y), where $X \sim N(0, I)$, and conditional distribution of Y given $X = x$ is $N(\sum_{j=1}^{10} x_j, 1)$

- Minimize $\|Aw - b\|^2 + \lambda \|w\|_1$ (Lasso)
Weighted (squared) ℓ^2 norm:

$$\sum_{i=1}^{d} c_i w_i^2$$

for some “costs” $c_1, \ldots, c_d \geq 0$

- Motivation: make it more “costly” (in regularizer) to use certain features
- Where do costs come from?
Example:

\[\varphi(x) = (1, \cos(x), \sin(x), \cos(2x), \sin(2x), \ldots, \cos(32x), \sin(32x)) \]

with regularizer on \(w = (w_0, w_{\cos,1}, w_{\sin,1}, \ldots, w_{\cos,32}, w_{\sin,32}) \)

\[w_0^2 + \sum_{j=1}^{d} j^2 \times (w_{\cos,j}^2 + w_{\sin,j}^2) \]

(More expensive to use “high frequency” features)
Question: Can effect of costs be achieved using (original) ridge regularization by changing ϕ?
Many linear classifiers with same training error rate

Possible inductive bias: largest “margin”, i.e., most “wiggle room”
For notational convenience, use $\mathcal{Y} = \{-1, 1\}$ instead of $\mathcal{Y} = \{0, 1\}$

$\implies f_{w,b}(x) = \text{sign}(w^T x + b)$

$\implies f_{w,b}(x) = y$ can be written as

$$y(w^T x + b) > 0$$

If it is possible to satisfy

$$y(w^T x + b) > 0 \quad \text{for all } (x, y) \in S,$$

then can rescale w and b so that

$$\min_{(x,y) \in S} y(w^T x + b) = 1$$

Say linear classifier $f_{w,b}$ achieves margin γ on example (x, y) if:

$\implies f_{w,b}(x) = y$

\implies Distance from x to decision boundary of $f_{w,b}$ is γ

Say $f_{w,b}$ achieves margin γ on dataset S if it achieves margin at least γ on every example $(x, y) \in S$

\implies I.e., γ is “worst” margin achieved on a training example
How to find linear classifier \(f_{w,b} \) with largest margin on dataset \(S \)?

Let \(z \in \text{span}\{w\} \cap H_{w,b} \)

For \((x, y) \in S\) satisfying \(y(w^T x + b) = 1 \), let \(\tilde{x} \) be orthoprojection of \(x \) to \(\text{span}\{w\} \), so

\[
w^T x + b = w^T \tilde{x} + b = y
\]

Therefore

\[
|w^T(\tilde{x} - z)| = __________
\]

So distance from \(x \) to \(H_{w,b} \) is __________

How to find linear classifier \(f_{w,b} \) with largest margin on dataset \(S \)?

Solution: find \((w, b) \in \mathbb{R}^d \times \mathbb{R}\) that satisfy

\[
\min_{(x,y) \in S} y(w^T x + b) = 1
\]

and that maximizes \(\frac{1}{\|w\|} \)
Support Vector Machine (SVM) optimization problem

\[
\min_{(w,b) \in \mathbb{R}^d \times \mathbb{R}} \frac{1}{2} \|w\|^2 \\
\text{s.t. } y(w^T x + b) \geq 1 \quad \text{for all } (x,y) \in S
\]

(Recall, labels are from \{-1,1\} instead of \{0,1\} here)

Examples \((x,y) \in S\) for which \(y(w^T x + b) = 1\) are called support vectors

Iris dataset, treating versicolor and virginica as a single class, using features

\[x_1 = \text{sepal width}, \quad x_2 = \text{petal width}\]
Soft-margin SVM: for datasets that are not linearly separable

\[
\min_{(w,b) \in \mathbb{R}^d \times \mathbb{R}} \frac{1}{2} \|w\|^2 + C \sum_{(x,y) \in S} [1 - y(w^T x + b)]_+
\]

where \([z]_+ = \max\{0, z\}\) (and \(C > 0\) is hyperparameter)

Term in summation corresponding to \((x, y) \in S:\n\)
- Zero if \(y(w^T x + b) \geq 1\)
- Otherwise, proportional to distance that \(x\) must be moved in order to satisfy \(y(w^T x + b) = 1\)

Synthetic example with normal feature vectors
- Two classes; class 0: \(N((0, 0), I)\), class 1: \(N((2, 2), I)\)
- 200 training data from each class
- Solved soft-margin SVM problem with \(C = 10\) to obtain \((w, b)\)