Statistical models for prediction

COMS 4771 Fall 2023

Goals of prediction



General statistical model for prediction:

» Regard outcome that we want to predict as a random variable Y, and
corresponding feature vector we observe as a random vector X

» Joint distribution P of (X,Y') is the “full population” of interest

Problem: Create a program f: X — ) that, given X, returns a prediction of Y

Usually these programs are called predictors or prediction functions
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How to measure how good/bad a prediction is?

Loss function loss: ) X ) — R measures how bad ¢ is as a prediction of the
outcome y

loss(7, )

(Loss is usually non-negative, and smaller loss is better)
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Example: zero-one loss (usually for classification problems)

10880/1(@7 y) - 0 otherwise

{1 if g £y
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Example: squared error, a.k.a. square loss (for ) C R)

A

losssq (9, y) = (§ — y)*

4/26



X and Y are random variables, so loss(f(X),Y) is also a random variable!

Standard “average-case” benchmark: expected value of the loss, a.k.a. risk:
Risk[f] = Elloss(/(X), Y)]

Expectation integrates loss(f(x),y) with respect to joint distribution of (X,Y")

5/26

Standard loss functions are usually simplifications of application-specific loss

Example: spam filtering, )V = {ham, spam}

» Mildly annoying if spam email is erroneous put in the inbox
» But very bad if real (important) email is put in spam folder
» Zero-one loss treats both types of mistakes equally

» Perhaps better to use loss(y, y) given by

y = ham | y = spam

ham 0 10

= spam 1 0

Nad¥ NN
I

This is an example of a cost-sensitive loss function

6/26



Optimal predictions of binary outcomes

Suppose you want to predict binary outcome Y where range(Y) = {0, 1} to
minimize the risk under zero-one loss (i.e., error rate)

X = side-information, potentially informative about distribution of Y

Example:
» Y is outcome of coin toss

» X is initial position of the coin, angle at which thumb hits the coin, current
wind conditions, . ..
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If you ignore X, then the best (constant) prediction of Y is

- if Pr(Y =1) < 1/2
yvr=9q_ if Pr(Y =1)>1/2
if Pr(Y =1)=1/2

Note that y* depends on the marginal distribution of Y:

Pr(Y =1)=) Pr(Y =1AX =uz)

If you observe X, it may be possible to do better
» Best prediction given X = x is

» f*(x) depends on the conditional distribution of Y given X =z
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Role of training data

Difficulty: optimal predictions/predictors depend on distribution of (X,Y)

» E.g., if distribution (X, Y") corresponds to entire human population, the need
to poll entire human population to calculate optimal prediction / predictors

Training data can help, under certain assumptions
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Assumption: training data is “representative” sample of population

Usual interpretation: training data (X, Y)Y . (X® Yy ™) form
independent and identically distributed (i.i.d.) sample from distribution of (X,Y)

Notation: | | N
(X@ Yy Oy W (X,Y)

or . , .
(XD y@yr " p

(if P is the distribution of (X,Y))
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Example: guess optimal prediction y* using training data
> Let Y be the majority value among Y, ... Y je.,

0 if more Os than 1s in Y1), ...
V=41 if more 1s than Osin YV, ... Y (™
either 0 or 1 if equal number of Os and 1s

» What's the probability that Y = y*?
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Example: guess optimal predictor f* using training data (for finite range(X))

> Let f(x) be the majority value among all Y@ such that X® =z
» If no such examples exist, then set f(:z:) arbitrarily

» Same as previous example, except with D = |range(X)| “coins”, and as few
as n/D training data pertinent to some coins
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Some ways training data can help when range(X) is large/infinite

» Assume/leverage “local regularity”
> Prediction at x benefits from training data (X®, Y ®) for with X nearby z

» Assume/leverage “global structure”
> Prediction at z benefits from all training data (X®, Y(®)
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Why i.i.d. assumption? Consider some gross violations:
» Distribution of training data has nothing to do with distribution of (X,Y")

» Suppose (X1 YD) ~ (X,Y), and then we define (X®,Y®) = (X1 Y1)
foralli=2,....n
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Role of test data



iid

Assumption: test data (XM Y)Y (X ym) < (XY, all independent

of training data

Suppose we have created a classifier f: X — ) using training data, and
we would like to know how good it is

» (True) error rate is err[f] = E[losso/l(f(X), Y)]

A

» To calculate err[f], we need to know the distribution of (X,Y")

A

» Using test data, we estimate err[f] by
N i~
a7 fl = — S "1 Ty 70
] = 1y D losson (/K1) 7)

This is the test error rate
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A

Test error rate: err[f] = — where
m

5= S 1{f(K0) £ 70

A

is sum of m i.i.d. Bernoulli(#) random variables where 6 = err[f]

Distribution of S is Binomial with m trials and success probability 6
» Notation: S ~ Binomial(m, 6)
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Facts about S ~ Binomial(m, 6)

> E(S) =mb
» var(S) =mb(1 —0)
ig_(lm_e 0) » N(0,1) as m — oo (by Central Limit Theorem)
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Why should test data be independent of training data?
Why doesn’t previous argument apply with i.i.d. training data?
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Cross validation



Common practice: split dataset into three parts
1. Training data: provided as input to learning algorithms

2. Validation data (a.k.a. development data, held-out data): used to evaluate
experimentation with models, tweaks to learning algorithm, etc.

3. Test data: only used after you have settled on the learning
algorithm /hyperparameters/etc., to evaluate the final predictor

(Hold-out) cross validation: simulate splitting dataset into training + test data

... all done only using training data

test data test data

82

training data
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K -fold cross validation

i

training data
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Leave one out cross validation (LOOCV): K-fold cross validation with K =n
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Optimal predictions of real-valued outcomes

Suppose you are to predict the real-valued outcome Y where range(Y) C R so
as to minimize risk under square loss (i.e., minimize MSE)

» If you ignore X, then best (constant) prediction of YV is y* = E(Y)

» |If you observe X, then best prediction given X = x is
n(x) =EY | X =)

Here, n: X — R is the conditional mean function

25 /26



Dartmouth students’ (first-year) college GPA vs high school GPA
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