Dimension reduction

COMS 4771 Fall 2023



Linear dimension reduction



Dimension reduction: map feature vectors from R to R* with k < d

» Reduce storage requirements for dataset

» Improve understandability of individual data points

» Improve performance of learning algorithms on dataset
> ...

Many methods are linear: i.e., based on linear map ¢: R? — R*

This lecture: unsupervised methods for dimension reduction
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Throughout this lecture, X = (X,...,Xy) is a random vector

e.g., X = data point drawn uniformly at random from §
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Axis-aligned embeddings



Axis-aligned embeddings:
> Let p(z) € R* keep a subset of k features z;, throw away the rest

Question: Which features to keep?

» Simple heuristic: Choose the & most “informative” features

Sort features by variance
var(Xq)) > -+ > var(Xg)

and choose ¢(z) = (z@y, - .-, T(x))
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Suppose only k features have non-negligible variance
var(Xqy) > -+ > var(X)) > var(X 1)) = - = var(Xg)) = 0
And ¢(z) = (z@y, ..., 2x) € R

For affine function w™z 4 b, we have

wX+b~

Therefore, this is close to @ (X ) + b for some @ € R* and b € R
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Example: MNIST dataset of handwritten digit images
> 784 features corresponding to pixel intensity values (from {0, 1,...,255})
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Can we do better than “axis-aligned embeddings”?
» Maybe there is a better way to choose which variables to keep?
» Retained features could contain a lot of redundancy!

» Can possibly reduce dimension even further by accounting for covariance
between features
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Covariance matrices



Covariance matrix cov(X) of a random vector X = (Xi,..., X,):
» d x d matrix whose (i, j)-th entry is cov(X;, X;)
» Matrix notation:

cov(X) = E[(X — E(X))(X - E(X))]

» cov(X) “encodes’ covariance between all linear functions of X
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Consider linear function f(z) = o'z, given by some o € R?

» If « is a unit vector (i.e., ||a|| = 1), then o'z is the "coordinate” of the
orthogonal projection of x to the line spanned by «

» The “coordinate” a'x is often referred to as the “projection of = in direction
a", even though this is not technically correct
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» What is the mean of o X7?

» What is the variance of o' X7?
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» What is the covariance between o' X and 5"X7
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Example: Dartmouth student data

» 1, = SAT verbal percentile, x5 = SAT math percentile,
x3 = high school GPA, x, = (first year) college GPA

» X = data point drawn uniformly at random from dataset

69.8 33.8 1.74 2.71
33.8 723 1.76 2.43
1.74 1.76 0.29 0.22
271 243 0.22 0.56

cov(X) =

» Define random variables Y and Z:
1
Y = §(SAT verbal + SAT math)

1
Z = §(high school GPA + college GPA)
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Using cov(X), can compute cor(Y, Z):

var(Y) = a' cov(X)a = 524
var(Z) =" COV(X)B =0.32
cov(Y,Z) = a' cov(X)p = 2.16
cor(Y, Z) = COV(Y’ 2 o5
var(Y') var(Z)
where
a =
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Review of eigenvalues and eigenvectors



» Every symmetric d X d matrix M has d real eigenvalues, conventionally
numbered in non-increasing order

AL = 2 A

» Because M is symmetric, it is always possible to find d corresponding
eigenvectors that form an orthonormal basis for R%:

v1,...,0q € RY
such that
M’UZ‘ = )\ﬂ}i
and
1 ifi=y
vivj = J

0 otherwise
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Eigendecomposition of M

d

T

M = E )\ivivi
=1
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For rest of lecture, let cov(X) have eigendecomposition

d
cov(X) = Z i 0]
i=1

with A\ > --- > A\; and vy, ..., v, orthonormal
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Variance maximizing direction



“Variance of X in direction o:

.
Var( 1 aTX> _«a cov(X)a

el [lex]

Question: In which direction o does X have the highest variance?

a’ cov(X)a

aer\{0}  |laf?
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Answer: o = v;—i.e., eigenvector of cov(X) corresponding to largest eigenvalue
(a.k.a. top eigenvector)
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Upshot: If you want to reduce to dimension k = 1, use direction of the top
eigenvector of cov(X)

Example: MNIST (just the 8's); 10 images sorted by “coordinate” along v,

VIEKLE I ERFS
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Principal components analysis



What we want: minimize variance of X in directions that are “thrown away”
For k£ =1, goal is captured by following problem:

. BT cov(X)B
min - max ———o——
ackd geri\{0}, |||

Bla

Solution also is given by a = v,

This fact is a special case of the “Courant min-max principle”

21/35



» For a = vy,

BT cov(X)p

max _— =
perd\{o}, |52 E—
Bla

» For any other a:
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Courant min-max principle says

, BT cov(X)p
min max ———— =
WCre, geri\fo}, |6 —
dim(W)=k  BLW

and this is achieved by the subspace W = span{vy, ..., v} spanned by top-k
eigenvectors of cov(X)
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Principal components analysis (PCA): dimension reduction method that, for
target dimension k, uses the linear map

o(x) = (viz, ..., vr)

based on the top-k eigenvectors of cov(X)

» o(x) gives the “coordinates” of the orthogonal projection of = to span of
vy, ..., U, a.k.a. the dimension-k PCA projection

» Also

cov(p(X)s, p(X);) =

So new “variables” in (X)) are uncorrelated
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MNIST: What subspace dimension k is needed so worst standard deviation in an
orthogonal direction is at most 0.1 x A\;?

» Axis-aligned embeddings: k£ = 419; PCA embeddings: k£ = 101
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Given ¢(z) € R¥ (from PCA), along with vy, ..., v, can obtain d-dimensional

“reconstruction” of z: .
Z e(x)i vi
i=1

(orthogonal projection of x to the subspace spanned by vy, ..., v;)
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Matrix approximation



PCA (on finite dataset) is related to singular value decomposition of n x d matrix
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Every matrix A has a singular value decomposition (SVD): decomposition of A
into the sum of r rank-1 matrices

A= Z s;u® (0T
i=1

where

» r =rank(A)

» s >--- > 5, >0 as positive real numbers (singular values of A)
» uM ... ul" is ONB for CS(A) (left singular vectors of A)

» v ... v is ONB for CS(A") (right singular vectors of A)
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Matrix form of SVD:

4 + 7 [s1 — (T —
A o o u® _
{ 4 sp| [¢— ()T —
\ZJ, \57 AN ‘;fl_ 7

Computation: numpy.linalg.svd
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Rank-k (truncated) SVD: keep only the first k& < r components of the SVD

k
A® = 37 s ()7
i=1

In matrix form:

+ 7 [ — (T —
AW — {4 L _
\: } spl |e— @*)T —
vk k) (VT
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Eckart-Young Theorem: If k < rank(A), then A®) =% 5;u® (v from
rank-k SVD has smallest sum-of-squared errors

DO (A= Ay

i=1 j=1

among all n x d matrices A of rank k
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Connection to PCA: Let X be random vector with uniform distribution over

{z®, ..., 2™} (and assume A is row-centered, so 1 ™" | 2() = 0)
» Then cov(X) =
» Moreover,

ATA =

» Non-zero eigenvalues of cov(X) are

» Corresponding eigenvectors of cov(X) are
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Statistical model: A is n x d matrix of independent random variables, with
Aij ~N(H,;,0°)

where H is n X d matrix with rank < k (the “parameter” of this model)

Maximum likelihood estimator of H:
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J Novembre et al. Nature 000, 1-4 (2008) doi:10.1038/nature07331
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