Dimension reduction
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Linear dimension reduction



Dimension reduction: map feature vectors from R? to R* with k < d

» Reduce storage requirements for dataset
» Improve understandability of individual data points

» Improve performance of learning algorithms on dataset
> ..

Many methods are linear: i.e., based on linear map ¢: R? — RF

This lecture: unsupervised methods for dimension reduction

Throughout this lecture, X = (X1, ..., Xy) is a random vector

e.g., X = data point drawn uniformly at random from &
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Axis-aligned embeddings

Axis-aligned embeddings:
> Let o(z) € R* keep a subset of k features z;, throw away the rest

Question: Which features to keep?

» Simple heuristic: Choose the & most “informative” features

Sort features by variance
var(X)) = - > var(X(g))

and choose ¢(x) = (z(1), .-, T(x))
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Suppose only k features have non-negligible variance
var(X(y) > -+ - > var(Xg) > var(X41)) = - = var(X(g)) ~ 0
And p(z) = (zq), ..., z@x) € RF

For affine function w™x + b, we have

w'X +b~

Therefore, this is close to @ p(X) + b for some @ € R¥ and b € R
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Example: MNIST dataset of handwritten digit images
> 784 features corresponding to pixel intensity values (from {0, 1,...,255})
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Can we do better than “axis-aligned embeddings”?
» Maybe there is a better way to choose which variables to keep?
» Retained features could contain a lot of redundancy!

» Can possibly reduce dimension even further by accounting for covariance
between features
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Covariance matrices

Covariance matrix cov(X) of a random vector X = (Xy,..., Xy):
» d x d matrix whose (i, j)-th entry is cov(X;, X;)
» Matrix notation:

cov(X) = E[(X — E(X))(X — E(X))]

» cov(X) "encodes” covariance between all linear functions of X
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Consider linear function f(z) = a'z, given by some o € R?
» If v is a unit vector (i.e., ||| = 1), then a'x is the “coordinate” of the
orthogonal projection of x to the line spanned by «

» The “coordinate” a'x is often referred to as the “projection of x in direction
a', even though this is not technically correct
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» What is the mean of o' X7

» What is the variance of " X7
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» What is the covariance between o' X and 57 X7

Example: Dartmouth student data
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» 11 = SAT verbal percentile, zo = SAT math percentile,
x3 = high school GPA, x, = (first year) college GPA

» X = data point drawn uniformly at random from dataset

cov(X) =

[69.8
33.8
1.74

2.71

» Define random variables Y and Z:

1
Y = §(SAT verbal + SAT math)

33.8
72.3
1.76
2.43

1.74
1.76
0.29
0.22

2.71]
2.43
0.22
0.56,

1
Z = E(high school GPA + college GPA)
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Using cov(X), can compute cor(Y, Z):

var(Y) = a' cov(X)a = 52.4

var(Z) = B cov(X)S = 0.32

cov(Y,Z) = a' cov(X)B = 2.16
) =

cor(Y, Z = 0.52

cov(Y, Z)
Y)

Jvar(

var(Z)

where
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Review of eigenvalues and eigenvectors

» Every symmetric d X d matrix M has d real eigenvalues, conventionally
numbered in non-increasing order

A > > )y

» Because M is symmetric, it is always possible to find d corresponding
eigenvectors that form an orthonormal basis for R¢:

Vi, ..., 0g € R
such that
MUZ' = )\ivi
and
1 ifi=y
v v; = J

0 otherwise
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Eigendecomposition of M

d

T

M = E )\ivivi
i=1

16 /35

For rest of lecture, let cov(X) have eigendecomposition

d
cov(X) = Z i v;0]
i=1

with A\ > --- > A\; and vy, ..., vy orthonormal
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Variance maximizing direction

“Variance of X in direction o:

1 T X
var(—aTX) = ¢ COV<2 Ja
e ]

Question: In which direction o does X have the highest variance?

a’ cov(X)a
max 5
acki\{0}  |[la]
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Answer: o = v;—i.e., eigenvector of cov(X) corresponding to largest eigenvalue
(a.k.a. top eigenvector)
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Upshot: If you want to reduce to dimension £ = 1, use direction of the top
eigenvector of cov(X)

Example: MNIST (just the 8's); 10 images sorted by “coordinate” along v;

*®IPELE I ERFS
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Principal components analysis

What we want: minimize variance of X in directions that are “thrown away”

For k = 1, goal is captured by following problem:

, BT cov(X)p
min max

acRd ,Beﬂéd\{O}, HBHQ

(e

Solution also is given by a = 14

This fact is a special case of the “Courant min-max principle”
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» For o = vy,

BT cov(X)pB
max > =
perd\(o}, |0 —
Bla
» For any other a:
22/35
Courant min-max principle says
. BT cov(X)B
min max =
werd, peri\(o},  [|B]]? -

dimW)=k BLW

and this is achieved by the subspace W = span{vy, ..., v} spanned by top-k
eigenvectors of cov(X)
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Principal components analysis (PCA): dimension reduction method that, for
target dimension k, uses the linear map

o(x) = (v]z,...,vlx)

based on the top-k eigenvectors of cov(X)

» o(x) gives the “coordinates” of the orthogonal projection of x to span of
vy, ...,V a.k.a. the dimension-k£ PCA projection

» Also

cov(o(X)i, 0(X);) =

So new “variables” in ¢(X) are uncorrelated
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MNIST: What subspace dimension k is needed so worst standard deviation in an
orthogonal direction is at most 0.1 x A;?

» Axis-aligned embeddings: £ = 419; PCA embeddings: £ = 101

600 1
—— axis-aligned
— PCA

(S

o

o
1

B
o
o

max stddev in orthogonal direction
S
o

200
100+
O_
0 200 400 600 800
K

25 /35



Given ¢(z) € R* (from PCA), along with vy, ..., v, can obtain d-dimensional

“reconstruction” of x: .
Z p(@)i vi
i=1

(orthogonal projection of z to the subspace spanned by vy, ..., v)
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Matrix approximation

PCA (on finite dataset) is related to singular value decomposition of n x d matrix

— (2T —
A= ;
— (e —
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Every matrix A has a singular value decomposition (SVD): decomposition of A
into the sum of r rank-1 matrices

A= Z s;u® (p)T
1=1

where

» r =rank(A)

» 51> -+ > s, >0 as positive real numbers (singular values of A)
> uM) ... u is ONB for CS(A) (left singular vectors of A)

> v . v is ONB for CS(A") (right singular vectors of A)
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Matrix form of SVD:

0 0 1 — ()T —
A= |u® . y® _
} } se| |¢— ()T —

Computation: numpy.linalg.svd
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Rank-k (truncated) SVD: keep only the first k& < r components of the SVD

k
Ak — Z s;u® (U(i))T
i=1

In matrix form:

4 + 7 |51 — ()T —

AR — [,@ o k)
} 1 sel| [+— @F)T —
U k) S(k) (V?’:))T
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Eckart-Young Theorem: If k < rank(A), then A®) = S%  s;u®(v)T from
rank-k SVD has smallest sum-of-squared errors

> (A — Ay

i=1 j=1

among all n X d matrices A of rank k
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Connection to PCA: Let X be random vector with uniform distribution over
{zW,...,z(™} (and assume A is row-centered, so = >°"  z() = ()
» Then cov(X) =

» Moreover,
ATA =

» Non-zero eigenvalues of cov(X) are

» Corresponding eigenvectors of cov(X) are
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Statistical model: A is n x d matrix of independent random variables, with
Ayj ~ N(Hyj,0%)

where H is n x d matrix with rank < k (the “parameter” of this model)

Maximum likelihood estimator of H:
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J Novembre et al. Nature 000, 1-4 (2008) doi:10.1038/nature07331
X

. cHypi"EH
ol T

‘Jﬁw iy T ;;R -
W T ol n” . Q GR . L]
11T 17 !
wharh ®
Tr {i g =
i TR I
m i
e 9
TGl
CH

35/35



