Neural networks

COMS 4771 Fall 2023

Feature maps revisited

Justification for simple statistical models (e.g., logistic regression):
» They are reasonable with a judicious choice of features or feature map

» In linear models, best prediction of Y given X = x is based entirely on

T

w' ()

where ¢ is the feature map

1/33

Weierstrass approximation theorem: For any continuous function f: R? — R,
any bounded region B C R?, and any € > 0, there exists a polynomial
g: R* — R such that

max [f(z) —g(z)[<€

» Polynomials give good approximations uniformly over an interval
(Cf. Taylor's theorem: only guarantees local approximations)
» Universal justification of polynomial expansion + linear functions

» Caveat: Degree of g may be large (e.g., growing with d and 1/¢)
» Somewhat ameliorated by kernel methods + regularization

2/33

Kernel machine: function learned by kernel method

g(zr) = Z a; k(z, x(i))

where k(- -) is the kernel function, and M. 2™ are the training examples

3/33
Stone-Weierstrass approximation theorem: For any continuous function

f: R — R, any bounded region B C R, and any £ > 0, there exists a function
g: R? — R of the form

p
g(a) =) ai exp(a"w®)
i=1

such that

max |f(z) — go)| < ¢

» Can replace “exp” with other “activation functions”
» Caveat: p may be large
» Another interpretation: linear function a"p(x) with feature map

o(zr) = (exp(xTw(l)), .. 7exp(xTw(p)))

Except the w(?’s may need to depend on f
» This kind of function is called a (two-layer) neural network

4/33

Kernel machine (Two-layer) neural network

- (0 ¢ <
g9(x) = Z@i k(z,) g(x) = Z a; exp(z"w?)
=1 i=1

» Only «;'s are learned using data » Both «;'s and w’s are learned

» Canuse p >n

5/33

Neural networks as straight-line programs

Very abbreviated history:

» McCulloch and Pitts (early 1940s):
Neural networks as computational model for brain

» Arnold and Kolmogorov (late 1950s):
Solved Hilbert's 13th problem (about polynomial roots) using neural networks

» Modern use of neural networks with Linnainmaa’s autodiff (early
1970s) started with Werbos (early 1980s)

» Many other researchers have since discovered other approximation-theoretic
properties and practical uses of neural networks (e.g., Cybenko, Rumelhart
and Hinton, LeCun)

Today, for machine learning purposes: a neural network is any function f such
that f(x) can be computed by a straight-line program

6/33

Q
(10, 5)
A 4
(10K 5) AccumulateGrad

K = torch.randn(d, p, requires_grad=True) Y v
Q = torch.randn(d, p, requires_grad=True) [ccumtateorad | [wmBachwaras |
V = torch.randn(d, p, requires_grad=True)

y A 4

I MmBackward0 I I PermuteBackward0 I

def f(x): re—
k =x 0K !
q=x00Q Cormmsomran] [) |
a = torch.softmax(k @ q.T, dim=1) v v

I MmBackward0 I I AccumulateGrad

return a @ x @ V

MmBackward0

f(x)
(100, 5)

7/33

Example:

P
flx) =ap+ Z o a(xTw(i> + b(i)) vy =
=1 Vo =

Y:=apt+ay Xv1+ay XU+ -+ aqp XU,

» v1,...,v, called hidden units (antiquated terminology)

» Using modern numerical software (e.g., pytorch):
g:=op+a oWz +b)

(W eRP* b a€RP, ag € R, and 0: R — R is applied component-wise)
8/33

In practice, neural network “architectures” (i.e., program “templates”) are built
using/composing component modules

Simplest module is fully-connected layer:

h— o(Wh+b)

(affine transformation followed by non-linear transformation)

Some examples of o:
» Rectified linear unit: relu(t) = [t], = max{0,¢}
» Hyperbolic tangent: tanh(t) = 2logistic(t) — 1

> Softmax: softmax: R¥ — R¥, where softmax(u); = —=24)
Ejj:1exp(uj)

9/33

Training neural networks

Problem: How to fit neural network f (with parameters 6) to training data?

» A few more lines in straight-line program gives
7= 3 loss(£(a).)
i=1

loss = torch.nn.NLLLoss(reduction="'sum')
J = loss(f(x), y)

» So autodiff can compute gradient of J with respect to all parameters 6

» This enables use of gradient-based optimization algorithms!

10/33

Major challenge: objective function J(#) might not be convex, so use of
gradient-based optimization is more complicated (e.g., initialization, step sizes)

» Many tips and tricks (e.g., "“Efficient BackProp”, LeCun et al, 1998)

» Experimentation may still be required

11/33

Synthetic example

Data: classes are two concentric circles, 50 examples per class

o © © 0 o0 g,
o) o)
6 - o o)
o) o)
o) o)
4 o) o)
o) o)
X X
o) ><x><><>< XXx o
21 e} 223< >$$3< 0
o) 2 % o)
o) % X o)
5] © %3< >3f o
° ><><x><><><><xxx o
o) o)
—4 A o o
o) o)
o o o o
—61 ° 4 o ©
O o o ©O

12/33

» Feature transformation: standardization

» Neural net: f(z) = softmax(Arelu(Wz +b) 4 ¢)

» Parameters: W € RPX2 h e RP, A € R2*XP, ¢ € R?
(We will vary the “width” p)
» k-th output is prediction of Pr(Y =k | X = z)

» Use gradient descent on average logarithmic loss on training data
» Random initialization:

» Step size: n; = 0.1

13/33

Results: p = 2

0.5001 —— training error rate
0.475 1 ---- training objective 0.68
L 0.66
% 0.450 1 g
= L0.64 ©
S 0.425 g
o I o
204007 0.62 2
c L £
©03754 | 0.605
- \)
0.350 - . 0.58
0.3254 | TTTmmmee—ee . -0.56
0 1000 2000 3000 4000 5000
iteration
Results: p =2
6_
(@)
(0]
4 - o
(@)
(@)
21 o
(@)
x 010
(@)
-24 ©
(@)
(@)
—4 1 o
(0]
(@)
_6-
—6 -4 -2 0 2 4 6

14/33

15/33

Results: p = 2

» Behaves like a linear classifier

» First component of relu(Wzx + b) is constant (0) over training data

» Only second component of relu(Wz + b) varies over training data

16 /33

Results: p = 2 — second component of relu(Wzx + b)

17/33

Results: p = 2

training error rate

Results: p =2

(different initialization)

0.50 1 —— training error rate
. . 1.4
---- training objective
0.45 1
1.2 o
0.40 1 >
g
0.351 1.0 -2,
(@)
0.30 1 2
082
0.25 1 Eg
-0.6
0.20 1
0.154 Uy -0.4
0 1000 2000 3000 4000 5000
iteration

(different initialization)

o O O o
o ©

18/33

19/33

Results: p = 2 (different initialization) — first component of relu(Wz + b)

6 - o ©°

0]

© 0 0 o 4

XXXXXXXXXX

20/33

21/33

Results: p =3

. -0.7
—— training error rate
i \ . . .
0.4 \“ ---- training objective | g g
\
) ! |)
-Ié 03 “\ 055
[- “ 8
g \‘ '04_6\
Q \\ o]
8 0.2 ! _0.3-8
£ \ c
© h 0.2 S
0.1 -
. 0.1
0.0{ L——"TT===meeee £0.0
0 1000 2000 3000 4000 5000
iteration
22/33
Results: p =3

23/33

Results: p = 3 — first component of relu(Wx + b)

Results: p = 3 — second component of relu(Wzx + b)

o © o O O o
6 1 o

24/33

25/33

Results: p = 3 — third component of relu(Wz + b)

o >%< \O\

>4 © >X&x X o

(0} X x X (0}

XX XXX

o) o)

—4 1 o o
o o)
o) ° ° o

—6- o o

26/33

27/33

Iris data classifier

» Features:
x1 = sepal width / sepal length, x5 = petal width / petal length

» Neural net: f(z) = softmax(Arelu(Wzx +) + ¢)

» Parameters: W € R10x2 p c R0 4 € R2X10 ¢ € R?
» k-th output is prediction of Pr(Y =k | X = z)

» Feature transformation and training procedure: same as in synthetic example
» Training error rate: 8.33%, test error rate: 10.0%

28/33

0.50
0.201 —— training error rate
---- training objective |
0.18 0.45
8 g
C0.16 -0.40=
5 | g
9014 | E
o : -0.35 o
| —
IS ' =
'© 0.129 L 0.30 &
0.10
-0.25
0.081_ , , , , : ,
0 3000 6000 9000 12000 15000 18000
iteration
29/33
0.45 1
< 0.40
et
g
o 0.35+
'©
© 0.30-
o
~ X
< 0.251
)
o
%0.201
s X
¥ 0.151 X s () x 2 X kx % X
L O versicolor (2) x Xx K Ax x
0.107 o virginica (3) "
T T T X T X
0.4 0.5 0.6 0.7

sepal width / sepal length

30/33

Deep learning lifestyle

» Since 2012, use of neural networks++ has exploded in machine learning
» Called “deep learning” due to use of large and “deep” neural networks

» Key factors in latest resurgence and success:

» Graphics processing units (GPUs) to speed-up matrix operations
» Easy-to-use numerical software with autodiff (e.g., pytorch)
» Large benchmark datasets (e.g., ImageNet)

31/33

Practice largely guided by heuristics and extensive experimentation

L12 L18
@ Convolution L1 L2 L3 L1 Fully connected Fully
o Convolution + LeakyReLU Average pooling Convolution + LeakyReLU Flattening + LeakyReLU connected
©) LeakyReLU activation
| 1 1 1 T 11 | |
D Average pooling
W; Linear combination

o0y,

W+ 50— 0
;

A -0

Input Feature maps
256 x 256 pixels 4 x 254 x 254

Feature maps
4x127 x 127

Feature maps Nodes

Nodes Nodes Output
12x125x 125 2304

1024 2

Many different architectural components, e.g.:

» Convolutional layer (in convolutional neural networks)

» Attention module (in transformer networks)

32/33

33/33

