
Neural networks

COMS 4771 Fall 2023

Feature maps revisited

Justification for simple statistical models (e.g., logistic regression):

▶ They are reasonable with a judicious choice of features or feature map

▶ In linear models, best prediction of Y given X = x is based entirely on

wTφ(x)

where φ is the feature map

1 / 33

Weierstrass approximation theorem: For any continuous function f : Rd → R,
any bounded region B ⊂ Rd, and any ε > 0, there exists a polynomial
g : Rd → R such that

max
x∈B

|f(x)− g(x)| ≤ ε

▶ Polynomials give good approximations uniformly over an interval
(Cf. Taylor’s theorem: only guarantees local approximations)

▶ Universal justification of polynomial expansion + linear functions

▶ Caveat: Degree of g may be large (e.g., growing with d and 1/ε)
▶ Somewhat ameliorated by kernel methods + regularization

2 / 33

Kernel machine: function learned by kernel method

g(x) =
n∑

i=1

αi k(x, x
(i))

where k(·, ·) is the kernel function, and x(1), . . . , x(n) are the training examples

3 / 33

Stone-Weierstrass approximation theorem: For any continuous function
f : Rd → R, any bounded region B ⊂ Rd, and any ε > 0, there exists a function
g : Rd → R of the form

g(x) =

p∑

i=1

αi exp(x
Tw(i))

such that
max
x∈B

|f(x)− g(x)| ≤ ε

▶ Can replace “exp” with other “activation functions”
▶ Caveat: p may be large
▶ Another interpretation: linear function αTφ(x) with feature map

φ(x) = (exp(xTw(1)), . . . , exp(xTw(p)))

Except the w(i)’s may need to depend on f
▶ This kind of function is called a (two-layer) neural network

4 / 33

Kernel machine

g(x) =
n∑

i=1

αi k(x, x
(i))

▶ Only αi’s are learned using data

(Two-layer) neural network

g(x) =

p∑

i=1

αi exp(x
Tw(i))

▶ Both αi’s and w(i)’s are learned

▶ Can use p > n

5 / 33

Neural networks as straight-line programs

Very abbreviated history:

▶ McCulloch and Pitts (early 1940s):
Neural networks as computational model for brain

▶ Arnold and Kolmogorov (late 1950s):
Solved Hilbert’s 13th problem (about polynomial roots) using neural networks

▶ Modern use of neural networks with Linnainmaa’s autodiff (early
1970s) started with Werbos (early 1980s)

▶ Many other researchers have since discovered other approximation-theoretic
properties and practical uses of neural networks (e.g., Cybenko, Rumelhart
and Hinton, LeCun)

Today, for machine learning purposes: a neural network is any function f such
that f(x) can be computed by a straight-line program

6 / 33

K = torch.randn(d, p, requires_grad=True)

Q = torch.randn(d, p, requires_grad=True)

V = torch.randn(d, p, requires_grad=True)

def f(x):

k = x @ K

q = x @ Q

a = torch.softmax(k @ q.T, dim=1)

return a @ x @ V

f(x)
 (100, 5)

MmBackward0

MmBackward0

SoftmaxBackward0

MmBackward0

MmBackward0

AccumulateGrad

K
 (10, 5)

PermuteBackward0

MmBackward0

AccumulateGrad

Q
 (10, 5)

AccumulateGrad

V
 (10, 5)

7 / 33

Example:

f(x) = α0 +

p∑

i=1

αi σ(x
Tw(i) + b(i))

v1 :=

v2 :=

...

vp :=

ŷ := α0 + α1 × v1 + α2 × v2 + · · ·+ αp × vp
▶ v1, . . . , vp called hidden units (antiquated terminology)

▶ Using modern numerical software (e.g., pytorch):

ŷ := α0 + αTσ(Wx+ b)

(W ∈ Rp×d, b, α ∈ Rp, α0 ∈ R, and σ : R → R is applied component-wise)

8 / 33

In practice, neural network “architectures” (i.e., program “templates”) are built
using/composing component modules

Simplest module is fully-connected layer:

h 7→ σ(Wh+ b)

(affine transformation followed by non-linear transformation)

Some examples of σ:

▶ Rectified linear unit: relu(t) = [t]+ = max{0, t}
▶ Hyperbolic tangent: tanh(t) = 2 logistic(t)− 1

▶ Softmax: softmax: Rk → Rk, where softmax(u)i =
exp(ui)∑k

j=1 exp(uj)

9 / 33

Training neural networks

Problem: How to fit neural network f (with parameters θ) to training data?

▶ A few more lines in straight-line program gives

J :=
n∑

i=1

loss(f(x(i)), y(i))

loss = torch.nn.NLLLoss(reduction='sum')

J = loss(f(x), y)

▶ So autodiff can compute gradient of J with respect to all parameters θ

▶ This enables use of gradient-based optimization algorithms!

10 / 33

Major challenge: objective function J(θ) might not be convex, so use of
gradient-based optimization is more complicated (e.g., initialization, step sizes)

▶ Many tips and tricks (e.g., “Efficient BackProp”, LeCun et al, 1998)

▶ Experimentation may still be required

11 / 33

Synthetic example

Data: classes are two concentric circles, 50 examples per class

6 4 2 0 2 4 6
x1

6

4

2

0

2

4

6

x 2

12 / 33

▶ Feature transformation: standardization

▶ Neural net: f(x) = softmax(A relu(Wx+ b) + c)
▶ Parameters: W ∈ Rp×2, b ∈ Rp, A ∈ R2×p, c ∈ R2

(We will vary the “width” p)
▶ k-th output is prediction of Pr(Y = k | X = x)

▶ Use gradient descent on average logarithmic loss on training data
▶ Random initialization:

Wi,j , bi
i.i.d.∼ N(0, 13), Ai,j , ci

i.i.d.∼ N(0, 2
p+1)

▶ Step size: ηt = 0.1

13 / 33

Results: p = 2

0 1000 2000 3000 4000 5000
iteration

0.325

0.350

0.375

0.400

0.425

0.450

0.475

0.500
tra

in
in

g
er

ro
r r

at
e

0.56

0.58

0.60

0.62

0.64

0.66

0.68

tra
in

in
g

ob
je

ct
iv

e

training error rate
training objective

14 / 33

Results: p = 2

6 4 2 0 2 4 6
x1

6

4

2

0

2

4

6

x 2

15 / 33

Results: p = 2

▶ Behaves like a linear classifier

▶ First component of relu(Wx+ b) is constant (0) over training data

▶ Only second component of relu(Wx+ b) varies over training data

16 / 33

Results: p = 2 — second component of relu(Wx+ b)

6 4 2 0 2 4 6
x1

6

4

2

0

2

4

6

x 2

0.000

0.893
1.786

2.679 3.573 4.466

5.359

17 / 33

Results: p = 2 (different initialization)

0 1000 2000 3000 4000 5000
iteration

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50
tra

in
in

g
er

ro
r r

at
e

0.4

0.6

0.8

1.0

1.2

1.4

tra
in

in
g

ob
je

ct
iv

e

training error rate
training objective

18 / 33

Results: p = 2 (different initialization)

6 4 2 0 2 4 6
x1

6

4

2

0

2

4

6

x 2

19 / 33

Results: p = 2 (different initialization) — first component of relu(Wx+ b)

6 4 2 0 2 4 6
x1

6

4

2

0

2

4

6

x 2

0.000
0.963

1.925

2.888

3.850

4.813 5.775

20 / 33

Results: p = 2 (different initialization) — second component of relu(Wx+ b)

6 4 2 0 2 4 6
x1

6

4

2

0

2

4

6

x 2

0.000

0.973

1.945

2.918

3.890

4.863
5.836

21 / 33

Results: p = 3

0 1000 2000 3000 4000 5000
iteration

0.0

0.1

0.2

0.3

0.4

tra
in

in
g

er
ro

r r
at

e

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

tra
in

in
g

ob
je

ct
iv

e

training error rate
training objective

22 / 33

Results: p = 3

6 4 2 0 2 4 6
x1

6

4

2

0

2

4

6

x 2

23 / 33

Results: p = 3 — first component of relu(Wx+ b)

6 4 2 0 2 4 6
x1

6

4

2

0

2

4

6

x 2

0.00
1.45

2.91

4.36
5.82

7.27

8.73

24 / 33

Results: p = 3 — second component of relu(Wx+ b)

6 4 2 0 2 4 6
x1

6

4

2

0

2

4

6

x 2

0.
00

0
1.

41
0

2.
82

1
4.

23
1

5.
64

1
7.

05
2

8.
46

2

25 / 33

Results: p = 3 — third component of relu(Wx+ b)

6 4 2 0 2 4 6
x1

6

4

2

0

2

4

6

x 2 0.000

1.292
2.584 3.875

5.167
6.459

7.751

26 / 33

Results: p = 1000

6 4 2 0 2 4 6
x1

6

4

2

0

2

4

6

x 2

27 / 33

Iris data classifier

▶ Features:

x1 = sepal width / sepal length, x2 = petal width / petal length

▶ Neural net: f(x) = softmax(A relu(Wx+ b) + c)
▶ Parameters: W ∈ R10×2, b ∈ R10, A ∈ R2×10, c ∈ R2

▶ k-th output is prediction of Pr(Y = k | X = x)

▶ Feature transformation and training procedure: same as in synthetic example

▶ Training error rate: 8.33%, test error rate: 10.0%

28 / 33

0 3000 6000 9000 12000 15000 18000
iteration

0.08

0.10

0.12

0.14

0.16

0.18

0.20

tra
in

in
g

er
ro

r r
at

e

0.25

0.30

0.35

0.40

0.45

0.50

tra
in

in
g

ob
je

ct
iv

e

training error rate
training objective

29 / 33

0.4 0.5 0.6 0.7
sepal width / sepal length

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

pe
ta

l w
id

th
 /

pe
ta

l l
en

gt
h

setosa (1)
versicolor (2)
virginica (3)

30 / 33

Deep learning lifestyle

▶ Since 2012, use of neural networks++ has exploded in machine learning

▶ Called “deep learning” due to use of large and “deep” neural networks

▶ Key factors in latest resurgence and success:
▶ Graphics processing units (GPUs) to speed-up matrix operations
▶ Easy-to-use numerical software with autodiff (e.g., pytorch)
▶ Large benchmark datasets (e.g., ImageNet)

31 / 33

Practice largely guided by heuristics and extensive experimentation

32 / 33

Many different architectural components, e.g.:

▶ Convolutional layer (in convolutional neural networks)

▶ Attention module (in transformer networks)

33 / 33

