Neural networks
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Feature maps revisited



Justification for simple statistical models (e.g., logistic regression):
» They are reasonable with a judicious choice of features or feature map

» In linear models, best prediction of Y given X = x is based entirely on

T

w' ()

where ¢ is the feature map
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Weierstrass approximation theorem: For any continuous function f: R? — R,
any bounded region B C R?, and any € > 0, there exists a polynomial
g: R* — R such that

max [f(z) —g(z)[ <€

» Polynomials give good approximations uniformly over an interval
(Cf. Taylor's theorem: only guarantees local approximations)
» Universal justification of polynomial expansion + linear functions

» Caveat: Degree of g may be large (e.g., growing with d and 1/¢)
» Somewhat ameliorated by kernel methods + regularization
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Kernel machine: function learned by kernel method

g(zr) = Z a; k(z, x(i))

where k(- -) is the kernel function, and M. 2™ are the training examples
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Stone-Weierstrass approximation theorem: For any continuous function

f: R — R, any bounded region B C R, and any £ > 0, there exists a function
g: R? — R of the form

p
g(a) =) ai exp(a"w®)
i=1

such that

max |f(z) — go)| < ¢

» Can replace “exp” with other “activation functions”
» Caveat: p may be large
» Another interpretation: linear function a"p(x) with feature map

o(zr) = (exp(xTw(l)), .. 7exp(xTw(p)))

Except the w(?’s may need to depend on f
» This kind of function is called a (two-layer) neural network
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Kernel machine (Two-layer) neural network

- (0 ¢ <
g9(x) = Z@i k(z, ) g(x) = Z a; exp(z"w?)
=1 i=1

» Only «;'s are learned using data » Both «;'s and w’s are learned

» Canuse p >n
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Neural networks as straight-line programs



Very abbreviated history:

» McCulloch and Pitts (early 1940s):
Neural networks as computational model for brain

» Arnold and Kolmogorov (late 1950s):
Solved Hilbert's 13th problem (about polynomial roots) using neural networks

» Modern use of neural networks with Linnainmaa’s autodiff (early
1970s) started with Werbos (early 1980s)

» Many other researchers have since discovered other approximation-theoretic
properties and practical uses of neural networks (e.g., Cybenko, Rumelhart
and Hinton, LeCun)

Today, for machine learning purposes: a neural network is any function f such
that f(x) can be computed by a straight-line program
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Example:

P
flx) =ap+ Z o a(xTw(i> + b(i)) vy =
=1 Vo =

Y:=apt+ay Xv1+ay XU+ -+ aqp XU,

» v1,...,v, called hidden units (antiquated terminology)

» Using modern numerical software (e.g., pytorch):
g:=op+a oWz +b)

(W eRP* b a€RP, ag € R, and 0: R — R is applied component-wise)
8/33

In practice, neural network “architectures” (i.e., program “templates”) are built
using/composing component modules

Simplest module is fully-connected layer:

h— o(Wh+b)

(affine transformation followed by non-linear transformation)

Some examples of o:
» Rectified linear unit: relu(t) = [t], = max{0,¢}
» Hyperbolic tangent: tanh(t) = 2logistic(t) — 1

> Softmax: softmax: R¥ — R¥, where softmax(u); = —=24)
Ejj:1exp(uj)
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Training neural networks

Problem: How to fit neural network f (with parameters 6) to training data?

» A few more lines in straight-line program gives
7= 3 loss(£(a). )
i=1

loss = torch.nn.NLLLoss(reduction="'sum')
J = loss(f(x), y)

» So autodiff can compute gradient of J with respect to all parameters 6

» This enables use of gradient-based optimization algorithms!
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Major challenge: objective function J(#) might not be convex, so use of
gradient-based optimization is more complicated (e.g., initialization, step sizes)

» Many tips and tricks (e.g., "“Efficient BackProp”, LeCun et al, 1998)

» Experimentation may still be required
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Synthetic example



Data: classes are two concentric circles, 50 examples per class
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» Feature transformation: standardization

» Neural net: f(z) = softmax(Arelu(Wz +b) 4 ¢)

» Parameters: W € RPX2 h e RP, A € R2*XP, ¢ € R?
(We will vary the “width” p)
» k-th output is prediction of Pr(Y =k | X = z)

» Use gradient descent on average logarithmic loss on training data
» Random initialization:

» Step size: n; = 0.1
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Results: p = 2
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Results: p = 2

» Behaves like a linear classifier

» First component of relu(Wzx + b) is constant (0) over training data

» Only second component of relu(Wz + b) varies over training data
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Results: p = 2 — second component of relu(Wzx + b)
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Results: p = 2

training error rate

Results: p =2

(different initialization)
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Results: p = 2 (different initialization) — first component of relu(Wz + b)
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Results: p =3
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Results: p = 3 — first component of relu(Wx + b)

Results: p = 3 — second component of relu(Wzx + b)
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Results: p = 3 — third component of relu(Wz + b)
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Iris data classifier

» Features:
x1 = sepal width / sepal length, x5 = petal width / petal length

» Neural net: f(z) = softmax(Arelu(Wzx + ) + ¢)

» Parameters: W € R10x2 p c R0 4 € R2X10 ¢ € R?
» k-th output is prediction of Pr(Y =k | X = z)

» Feature transformation and training procedure: same as in synthetic example
» Training error rate: 8.33%, test error rate: 10.0%
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Deep learning lifestyle

» Since 2012, use of neural networks++ has exploded in machine learning
» Called “deep learning” due to use of large and “deep” neural networks

» Key factors in latest resurgence and success:

» Graphics processing units (GPUs) to speed-up matrix operations
» Easy-to-use numerical software with autodiff (e.g., pytorch)
» Large benchmark datasets (e.g., ImageNet)
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Practice largely guided by heuristics and extensive experimentation
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Many different architectural components, e.g.:

» Convolutional layer (in convolutional neural networks)

» Attention module (in transformer networks)
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