Nearest neighbors

COMS 4771 Fall 2023
Digit recognition
Problem: Create a program that, given an image of a handwritten digit as input, returns the digit depicted in the image
Simplifying assumptions:

- The image depicts some digit (from \{0, 1, \ldots, 9\})
- The depicted digit is (roughly) in the center of the image
- The image is a 28×28 pixel image (for a total of 784 pixels)
- Each pixel is grayscale; pixel intensity is an integer from \{0, 1, \ldots, 255\}
Machine learning approach to digit recognition:

- Don’t explicitly write the image classifier by hand
- Collect a labeled dataset of images
 - Each image is an example of how someone might write a digit
 - Each image is annotated with a label—the digit depicted in the image
 - NIST has collected such a dataset with 60000 examples (“MNIST”)¹
- Provide the labeled dataset as input to a learning algorithm
- Learning algorithm returns an image classifier

¹http://yann.lecun.com/exdb/mnist/
Nearest neighbors learning algorithm
Nearest Neighbors (NN) learning algorithm:

- Input: Labeled dataset S
- Output: NN classifier for labeled dataset S (also a program!)
Notation:

- n: number of images in the dataset
- $x^{(1)}, x^{(2)}, \ldots, x^{(n)}$: the n images
- $y^{(1)}, y^{(2)}, \ldots, y^{(n)}$: the n corresponding labels
- Labeled dataset

$$S = \{(x^{(i)}, y^{(i)})\}_{i=1}^{n} = ((x^{(1)}, y^{(1)}), (x^{(2)}, y^{(2)}), \ldots, (x^{(n)}, y^{(n)}))$$

- (Sometimes x’s and y’s come separately: $(x^{(i)})_{i=1}^{n}$ and $(y^{(i)})_{i=1}^{n}$)
NN classifier for labeled dataset S:

- **Input:** x
- **Output:** prediction of correct label of x
- **Pseudocode:**
Euclidean distance

\[D(x, z) = \| x - z \| \]
Image of digit as 784-vector: pixel intensities as **features**
Computational requirements of NN classifier:

- Memory

- Time
import numpy as np

def learn(train_x, train_y):
 return (train_x, train_y)

def predict(params, test_x):
 x, y = params
 return y[np.argmin(np.sum(x**2, axis=1) - 2*test_x.dot(x.T), axis=1)]

If you want to strictly follow the idea that “learn” should return a function:
def learn(train_x, train_y):
 return lambda test_x: train_y[np.argmin(np.sum(train_x**2, axis=1) - 2*test_x.dot(train_x.T), axis=1)]
Evaluating a classifier
Error rate on classifier f on labeled dataset:

Training error rate (i.e., error rate on S) of NN classifier:
NIST has provided separate collection of 10000 labeled examples, which we did not provide to NN learning algorithm

- We use it as test data
- Test error rate (i.e., error rate on test data) of NN classifier:
Test image, nearest neighbor in training data:

```
28
35
54
41
```
Upgrading NN: more neighbors
Test image, nearest neighbor in training data:

3 closest images in training data:
\textit{k-NN classifier for labeled dataset }S:\textit{ }

\begin{itemize}
 \item Input: \(x \)
 \item Output: prediction of correct label of \(x \)
 \item Pseudocode:
\end{itemize}
<table>
<thead>
<tr>
<th>hyperparameter k</th>
<th>1</th>
<th>3</th>
<th>5</th>
<th>7</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>test error rate</td>
<td>3.09%</td>
<td>2.95%</td>
<td>3.12%</td>
<td>3.06%</td>
<td>3.41%</td>
</tr>
</tbody>
</table>
Hyperparameter tuning (e.g., how to choose k?)
Cross validation: use subset of training data to act as test data for purpose of evaluating different hyperparameter choices

Pseudocode:
Upgrading NN: better distances
Other types of distances

- ℓ^p distance for d-vectors $x = (x_1, \ldots, x_d)$

$$D_p(x, z) = (|x_1 - z_1|^p + \cdots + |x_d - z_d|^p)^{1/p}$$
Other types of distances

- “Edit distance” for strings (e.g., $x = \text{“kitten”}$)

$$D_{\text{edit}}(x, z) = \# \text{ insertions/deletions/} \text{swaps needed to transform } x \text{ to } z$$
Digit recognition using NN classifier based on different distances

<table>
<thead>
<tr>
<th>distance metric</th>
<th>(\ell^2)</th>
<th>(\ell^3)</th>
<th>“shape”</th>
</tr>
</thead>
<tbody>
<tr>
<td>test error rate</td>
<td>3.09%</td>
<td>2.83%</td>
<td>< 1%</td>
</tr>
</tbody>
</table>
Caution: many types of distances (e.g., ℓ^p distances) are sensitive to the quality of the numerical features

- 1000 “noisy” pixels with random intensity values

- Single “noisy” pixel with scale 1000 times that of regular pixels
“Curse of dimension”: weird effects in “high dimensional” feature spaces (e.g., space of all d-vectors for large d)
Question: How can we choose the distance function to use?