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Logistic regression model



Logistic regression model: statistical model for binary classification data
▶ Conditional distribution of Y given X = x is Bernoulli(logistic(wTx))

▶ Logistic function: logistic(t) = et

1+et

▶ 1− logistic(t) = 1
1+et = logistic(−t)
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▶ Weight vector w ∈ Rd is parameter of the model
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Log odds ratio (a.k.a. logit) is a linear function of x:

ln

(
Pr(Y = 1 | X = x)

Pr(Y = 0 | X = x)

)
=

Given X = x, label 1 is more likely than label 0 if and only if

So classifier with smallest error rate (under this distribution) is

f ⋆(x) =

{
1 if

0 if

Such a classifier is called a linear classifier
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Often also include an “intercept” parameter b like in linear regression

wTx+ b instead of just wTx

▶ But as usual, we can realize this by including an extra always-1 feature:
xd+1 = 1, and let wd+1 act like b
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Fitting logistic regression models to data



Maximum likelihood estimation for logistic regression model:

▶ Likelihood of w:

L(w) =
∏

(x,y)∈S

{
logistic(wTx) if y = 1

1− logistic(wTx) if y = 0

=
∏

(x,y)∈S

eyw
Tx

1 + ewTx

▶ Log-likelihood:

lnL(w) =
∑

(x,y)∈S

(
ywTx− ln(1 + ew

Tx)
)

▶ Maximizer is not characterized by a system of linear equations, but can be
approximated by iterative methods
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Iterative improvement algorithm for logistic regression log-likelihood

▶ Start with w = 0

▶ Repeat T times:

w ← w + η
∑

(x,y)∈S
(y − logistic(wTx))x

▶ Return w

(Hyperparameters: “step size” η > 0, “maximum number of iterations” T > 0)
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def learn(train_x, train_y, eta=0.1, num_steps=1000):

w = np.zeros(train_x.shape[1])

for t in range(num_steps):

w += eta * (train_y - 1/(1+np.exp(-train_x.dot(w)))).dot(train_x)

return w

def predict(params, test_x):

return test_x.dot(params) > 0
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Synthetic example with normal features

▶ Two classes; class 0: N((0, 0), I), class 1: N((2, 2), I)

▶ 200 training data from each class

▶ Fit parameters (w1, w2, b) of logistic regression model via (approximate) MLE
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Comparison to normal generative model
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Logistic regression model for iris dataset

Iris dataset, treating versicolor and virginica as a single class
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Decision boundary after 50, 500, 5000, 50000, 500000 steps:
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Per-class histograms of predicted conditional probabilities P̂r(Y = 1 | X = x)
after 5 steps
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Per-class histograms of predicted conditional probabilities P̂r(Y = 1 | X = x)
after 50 steps
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Per-class histograms of predicted conditional probabilities P̂r(Y = 1 | X = x)
after 500 steps
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Per-class histograms of predicted conditional probabilities P̂r(Y = 1 | X = x)
after 5000 steps
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Per-class histograms of predicted conditional probabilities P̂r(Y = 1 | X = x)
after 50000 steps
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Per-class histograms of predicted conditional probabilities P̂r(Y = 1 | X = x)
after 500000 steps
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Logarithmic loss

Negative log-likelihood objective in logistic regression can be written as

− lnL(w) =
∑

(x,y)∈S
y ln

(
1

p̂w(x)

)
+ (1− y) ln

(
1

1− p̂w(x)

)

where p̂w(x) = logistic(wTx) is predicted probability of Y = 1 given X = x in
logistic regression model

Objective is proportional to empirical risk using log(arithmic) loss

loss(p̂, y) = y ln

(
1

p̂

)
+ (1− y) ln

(
1

1− p̂

)

(a.k.a. cross entropy loss)
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Newsgroup dataset

Text classification application: classify articles from internet message boards

▶ For simplicity, just two classes: religion (class 0), politics (class 1)
▶ Number of training data: 3028; number of test data: 2017
▶ Features:

▶ Consider a vocabulary of d = 34250 “words”
▶ Represent an article by vector x ∈ {0, 1}d where

xj =

{
1 if article contains j-th vocabulary word

0 otherwise

▶ Log odds ratio in logistic regression model (with w ∈ Rd):

▶ Words with negative wj move log odds ratio to favor class
▶ Words with positive wj move log odds ratio to favor class

20 / 34



Fit logistic regression model to training data by approximate MLE

▶ Training error rate: 0.9%; test error rate: 8.5%

▶ Examining the parameter vector w:
Most negative coefficients Most positive coefficients

god (−1.1291) israel (+0.6019)
christian (−0.7304) gun (+0.5766)

bible (−0.6747) government (+0.5620)
jesus (−0.6679) american (+0.5148)
keith (−0.5765) news (+0.4594)

christians (−0.5295) clinton (+0.4417)
religion (−0.5285) rights (+0.4178)
church (−0.4869) guns (+0.4169)
christ (−0.4635) israeli (+0.4166)
athos (−0.4456) politics (+0.3933)
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Example of article with logistic(wTx) ≈ 0:

Rick, I think we can safely say, 1) Robert is not the only person who under-
stands the Bible, and 2), the leadership of the LDS church historicly never
has. Let’s consider some “personal interpretations” and see how much trust
we should put in “Orthodox Mormonism”, which could never be confused
with Orthodox Christianity. [...]
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Example of article with logistic(wTx) ≈ 0.5:

Does anyone know where I can access an online copy of the proposed “jobs”
or “stimulus” legislation? Please E-mail me directly and if anyone else is
interested, I can post this information.
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Example of article with logistic(wTx) ≈ 1:

THE ENEMY WITHIN

~~~~~~~~~~~~~~~~

By Robert I. Friedman

The Village Voice, May 11, 1993, Vol. XXXVIII No. 19

| How The Anti-Defamation League Turned the Notion |

| of Human Rights on Its Head, Spying on Progress- |

| ives and Funneling Information to Law Enforcement |

[...]
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Geometry of linear classifiers

(Homogeneous) linear classifier fw : Rd → {0, 1}, parameterized by w ∈ Rd:

fw(x) = 1{wTx > 0} =
{
1 if wTx > 0

0 if wTx ≤ 0

Decision boundary is a (homogeneous) hyperplane (d− 1-dimensional subspace):

Hw = {x ∈ Rd : wTx = 0}

w

x

α

Hw
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Linear classifier fw,b : Rd → {0, 1}, parameterized by w ∈ Rd and b ∈ R:

fw,b(x) = 1{wTx+ b > 0} =
{
1 if wTx+ b > 0

0 if wTx+ b ≤ 0

Decision boundary is an affine hyperplane:

Hw,b = {x ∈ Rd : wTx+ b = 0}

w

x

α

Hw,b
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Linear algebra of linear classifiers (assume w ̸= 0)

▶ Orthoprojector to L = span{w} is

▶ The (homogeneous) hyperplane Hw is the of L

▶ The orthogonal projection of x to the line is

so is the “coordinate” of x in this line
(Not technically correct to refer to this “coordinate” as “the projection of x”)

▶ To compute fw,b(x), check if this “coordinate” is more than
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Computation and Perceptron

Problem: given a dataset S from Rd × {0, 1}, find w ∈ Rd that minimizes
training error rate

1

|S|
∑

(x,y)∈S
loss0/1(fw(x), y)

(where fw(x) = 1{wTx > 0})

▶ Computationally intractable in general (assuming P ̸= NP)

▶ Very different from problem solved by OLS
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Simpler problem (linear separability): given a dataset S from Rd × {0, 1}, is there
a w ∈ Rd such that training error rate of fw(x) = 1{wTx > 0} is zero?

∃? w ∈ Rd s.t.
1

|S|
∑

(x,y)∈S
loss0/1(fw(x), y) = 0

(And return such w if answer is yes)

▶ “Linear feasibility” problem; can be solved efficiently
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Perceptron algorithm

▶ Start with w = 0

▶ While there exists (x, y) ∈ S such that fw(x) ̸= y:
▶ Let (x, y) ∈ S be any such example
▶ Update w:

w ←
{
w + x if y = 1

w − x if y = 0

▶ Return w
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Iris dataset, treating versicolor and virginica as a single class, using features

x1 = sepal width, x2 = petal width
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Iris dataset, treating versicolor and virginica as a single class, using features

x1 = sepal width / sepal length, x2 = petal width / petal length
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Convergence guarantee for Perceptron: Suppose there is a unit vector
v ∈ Rd (∥v∥ = 1) and a positive number γ > 0 such that, for all (x, y) ∈ S,

{
vTx ≥ +γ if y = 1

vTx ≤ −γ if y = 0

Then Perceptron halts after

max(x,y)∈S∥x∥2
γ2

loop iterations

(More “wiggle room” =⇒ fewer loop iterations)
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Choosing different examples in Perceptron iterations can give different solutions
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