Linear regression

COMS 4771 Fall 2023



Dartmouth student dataset



Dataset of 750 Dartmouth students’ (first-year) college GPA!
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https://chance.dartmouth.edu/course/Syllabi/Princeton96/ETSValidation.html

Dartmouth dataset also has high school GPA of each student
Question: Is high school GPA predictive of college GPA?
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Attempting to exploit “local regularity” using NN

4.0+
3.51
3.0

<

$,2.01

o

S 1.5
1.0
0.51
0.01

a 2.5
(O]

+ E[college GPA | high school GPA]
—— "1"-NN prediction
---- "3"-NN prediction

2.0 2.5 3.0 35 4.0 4.5
high school GPA

3/30



Possible “global” modeling assumption:

» Increase in high school GPA by A should give an increase in (expected)
college GPA by oc A

» |n other words,
E[college GPA | high school GPA]

is function of high school GPA
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Least squares linear regression



f: R — R is linear if it is of the form

f(x) =mz+b

for some parameters m, b € R
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Problem: given a dataset 8§ from R x R, find (parameters of) a linear function
f(z) = mx + b of minimal sum of squared errors (SSE)

sse[m, b] = Z (mz +b—y)?

(z,y)€S8

Method of solution is called ordinary least squares (OLS)
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Minimizers of SSE must be zeros of the two partial derivative functions:

asse[rmb] =2 Z (mzx+b—y)x=0

om (z,y)€8
0
;Ze[m,b] =2 Z (mr+b—y)=0
(z,y)€S

Two linear equations in two unknowns

Together, the equations are called the normal equations
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Equivalent form:

avg(r®)m + avg(z)b = avg(wy)
avg(z)m + b = avg(y)
where
1 2 1 2
avg(x)—ﬂ Z x, avg(x)—a Z x*,
(z.y)€8 (z,y)€$
1 1
avg(flfy)—@ > ay, avg(y) g oy
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Solution to normal equations:
_ avg(ay) — avg(a) - avg(y)
avg(z?) — avg(z)?

b= avg(y) —m - avg(z)

Y

What if avg(z?) = avg(z)??
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For Dartmouth dataset:
m = 0.751, = 0.067

RMSE:

1
6] sse[m, b; 8] = 0.629

(Recall standard deviation of college GPA is 0.75)
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Bivariate linear regression



Dartmouth dataset also includes SAT verbal percentiles
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Linear function of two variables x; and xs:

f(%l, xg) = M1 + Moo + b

Problem: given a dataset 8§ from R? x R, find (parameters of) a linear function
f(z1,22) = myxy + moxs + b of minimal sum of squared errors

sse[m, b; 8] = Z (miz1 + maxs + b — y)*

(Il,IQ,y)GS
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Normal equations: three linear equations in three unknowns (mj, ms,b)

avg(x%) avg(zri1zs) avg(w) my avg(r1y)
avg(wory) an(fg) avg(zz) my| = |avg(zay)
avg(xq) avg(xs) 1 b avg(y)

Solve using elimination algorithm
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Dartmouth dataset: x; = high school GPA, x5 = SAT verbal percentile
my = 0.611, my=0.024, b= —0.639

RMSE:

1
\/E sse[my, ma, b; 8] = 0.603

(Recall standard deviation of college GPA is 0.75)
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Linear algebra of ordinary least squares



(Homogeneous) linear function of d variables = (z1,...,x4) is parameterize by
d-dimensional weight vector w = (wy, ..., wy):

fw(x) =w'x

To handle inhomogeneous linear functions (i.e., affine functions), include an extra
always-1 feature: x4, =1

folx) =w"z

= (w11 + -+ + warq) +
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Problem: given a dataset § from R? x R, find w € R? of minimal sum of squared

errors
ssew; 8] = Z (w'z — y)?

(z,y)€S

Method of solution: OLS
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Matrix notation: let § = ((z,4®))"_,, and put

<_ (l’(l))T _> y(l)
A= : , b=
e}
wz® wz® — y@
Aw = : , Aw—b= :
w ™ wTr™ — y(n)
Therefore

| 4w —bl* =

i=1
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Aw € CS(A) for every w € R?
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How many ways to write b as a linear
combination of the columns of A?
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Normal equations in matrix notation
Key fact: CS(A) and NS(AT) are orthogonal complements

23/30



Summary:

» Normal equations: (ATA)w = A"

» If rank(A) = d, then solution is unique

» Else, infinitely-many solutions

» Common choice for tie-breaking: minimum norm solution

arg min ||w|| s.t. (A"A)w = A™b

weR4
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def learn(train_x, train_y):
return np.linalg.pinv(train_x).dot(train_y)

def predict(params, test_x):
return test_x.dot(params)
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Statistical view of ordinary least squares



Normal linear regression model: Conditional distribution of Y given X =z is

N(w'z,o?)

» w and o? are parameters of the model
» In this model, best possible MSE is o2
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MLE in normal linear regression model
» Likelihood of w and o2

(z,y)€8
» Log-likelihood:
In L(w, o) = L Z (y —w'z)* — B8l In(270?)
’ 202 s 2
x?y

» In terms of w, maximizing log-likelihood is same as minimizing SSE!
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Statistical inference (example)
» Suppose you fit linear regression model to data, and find that w # (0, ...,0)

How confident are you in this finding?
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Generalization



» Suppose g (X,Y)

» OLS gives minimizer of empirical risk (for square loss, among linear functions)

RISk Z lossgq (W', y)

z,y)€S

But we actually care about the (true) risk
Risk[w] = E[losssq(w' X, Y)]

» |Is empirical risk a good estimate of (true) risk?
» Usually only if |§] is sufficiently large
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—

Extreme example: d = 1, || = 2, Risk[w] =0

full population
training data
---- OLSfit
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