
Linear regression
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Dartmouth student dataset



Dataset of 750 Dartmouth students’ (first-year) college GPA1
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https://chance.dartmouth.edu/course/Syllabi/Princeton96/ETSValidation.html
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Dartmouth dataset also has high school GPA of each student
Question: Is high school GPA predictive of college GPA?
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Attempting to exploit “local regularity” using NN
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Possible “global” modeling assumption:

▶ Increase in high school GPA by ∆ should give an increase in (expected)
college GPA by ∝ ∆

▶ In other words,
E[college GPA | high school GPA]

is function of high school GPA
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Least squares linear regression



f : R→ R is linear if it is of the form

f(x) = mx+ b

for some parameters m, b ∈ R
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Problem: given a dataset S from R× R, find (parameters of) a linear function
f(x) = mx+ b of minimal sum of squared errors (SSE)

sse[m, b] =
∑

(x,y)∈S

(mx+ b− y)2

Method of solution is called ordinary least squares (OLS)
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Minimizers of SSE must be zeros of the two partial derivative functions:

∂ sse

∂m
[m, b] = 2

∑
(x,y)∈S

(mx+ b− y)x = 0

∂ sse

∂b
[m, b] = 2

∑
(x,y)∈S

(mx+ b− y) = 0

Two linear equations in two unknowns

Together, the equations are called the normal equations
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Equivalent form:

avg(x2)m + avg(x) b = avg(xy)

avg(x)m + b = avg(y)

where

avg(x) =
1

|S|
∑

(x,y)∈S

x, avg(x2) =
1

|S|
∑

(x,y)∈S

x2,

avg(xy) =
1

|S|
∑

(x,y)∈S

xy, avg(y) =
1

|S|
∑

(x,y)∈S

y
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Solution to normal equations:

m =
avg(xy)− avg(x) · avg(y)

avg(x2)− avg(x)2
,

b = avg(y)−m · avg(x)

What if avg(x2) = avg(x)2?
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For Dartmouth dataset:
m = 0.751, b = 0.067

RMSE: √
1

|S|
sse[m, b; S] = 0.629

(Recall standard deviation of college GPA is 0.75)
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Bivariate linear regression



Dartmouth dataset also includes SAT verbal percentiles

2.0 2.5 3.0 3.5 4.0 4.5
high school GPA

30

40

50

60

70

SA
T 

ve
rb

al
 p

er
ce

nt
ile

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

co
lle

ge
 G

PA

12 / 30



Linear function of two variables x1 and x2:

f(x1, x2) = m1x1 +m2x2 + b

Problem: given a dataset S from R2 × R, find (parameters of) a linear function
f(x1, x2) = m1x1 +m2x2 + b of minimal sum of squared errors

sse[m, b; S] =
∑

(x1,x2,y)∈S

(m1x1 +m2x2 + b− y)2
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Normal equations: three linear equations in three unknowns (m1,m2, b) avg(x2
1) avg(x1x2) avg(x1)

avg(x2x1) avg(x2
2) avg(x2)

avg(x1) avg(x2) 1

m1

m2

b

 =

avg(x1y)
avg(x2y)
avg(y)


Solve using elimination algorithm
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Dartmouth dataset: x1 = high school GPA, x2 = SAT verbal percentile

m1 = 0.611, m2 = 0.024, b = −0.639

RMSE: √
1

|S|
sse[m1,m2, b; S] = 0.603

(Recall standard deviation of college GPA is 0.75)
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Linear algebra of ordinary least squares



(Homogeneous) linear function of d variables x = (x1, . . . , xd) is parameterize by
d-dimensional weight vector w = (w1, . . . , wd):

fw(x) = wTx

To handle inhomogeneous linear functions (i.e., affine functions), include an extra
always-1 feature: xd+1 = 1

fw(x) = wTx

= (w1x1 + · · ·+ wdxd) +
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Problem: given a dataset S from Rd×R, find w ∈ Rd of minimal sum of squared
errors

sse[w; S] =
∑

(x,y)∈S

(wTx− y)2

Method of solution: OLS
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Matrix notation: let S = ((x(i), y(i)))ni=1, and put

A =

←− (x(1))T −→
...

←− (x(n))T −→

 , b =

y
(1)

...
y(n)


so

Aw =

w
Tx(1)

...
wTx(n)

 , Aw − b =

w
Tx(1) − y(1)

...
wTx(n) − y(n)


Therefore

∥Aw − b∥2 =
n∑

i=1
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b

b̂

a(1)

a(2)

Aw ∈ CS(A) for every w ∈ Rd
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b

b̂

a(1)

a(2)

How many ways to write b̂ as a linear
combination of the columns of A?
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Normal equations in matrix notation
Key fact: CS(A) and NS(AT) are orthogonal complements
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Summary:

▶ Normal equations: (ATA)w = ATb

▶ If rank(A) = d, then solution is unique

▶ Else, infinitely-many solutions

▶ Common choice for tie-breaking: minimum norm solution

argmin
w∈Rd

∥w∥ s.t. (ATA)w = ATb
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def learn(train_x, train_y):

return np.linalg.pinv(train_x).dot(train_y)

def predict(params, test_x):

return test_x.dot(params)
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Statistical view of ordinary least squares



Normal linear regression model: Conditional distribution of Y given X = x is

N(wTx, σ2)

▶ w and σ2 are parameters of the model

▶ In this model, best possible MSE is σ2
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MLE in normal linear regression model

▶ Likelihood of w and σ2:

L(w, σ2) =
∏

(x,y)∈S

1√
2πσ2

exp

(
−(y − wTx)2

2σ2

)
▶ Log-likelihood:

lnL(w, σ2) = − 1

2σ2

∑
(x,y)∈S

(y − wTx)2 − |S|
2

ln(2πσ2)

▶ In terms of w, maximizing log-likelihood is same as minimizing SSE!
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Statistical inference (example)

▶ Suppose you fit linear regression model to data, and find that w ̸= (0, . . . , 0)

How confident are you in this finding?
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Generalization



▶ Suppose S
i.i.d.∼ (X, Y )

▶ OLS gives minimizer of empirical risk (for square loss, among linear functions)

R̂isk[w] =
1

n

∑
(x,y)∈S

losssq(w
Tx, y)

But we actually care about the (true) risk

Risk[w] = E[losssq(wTX, Y )]

▶ Is empirical risk a good estimate of (true) risk?
▶ Usually only if |S| is sufficiently large
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Extreme example: d = 1, |S| = 2, R̂isk[w] = 0
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