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Upgrading linear models



Upgrade linear models by being creative about features

▶ (Where do numerical features really come from anyway?)

▶ Example: text data
▶ One feature per word: but what numerical value to assign?

▶ Stemming: map words with the same “stem” to the same canonical form

▶ Stop word filtering: Ignore words like “the”, “a”, etc.

▶ Not specific to linear models
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Suppose you already have numerical features x = (x1, . . . , xd) ∈ Rd . . .

▶ Instead of using x directly in linear model, can use φ(x) for some feature map

φ : Rd → Rp

(with p possibly different, perhaps larger, than d)

▶ Feature space (corresponding to φ): image of φ
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Any univariate polynomial in x of degree ≤ k can be written as

wTφ(x) = w0 + w1x+ w2x
2 + · · ·+ wkx

k

where feature map φ : R→ Rk+1 is given by

φ(x) = (1, x, x2, . . . , xk)
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Any multivariate quadratic can be written as

wTφ(x)

where feature map φ : Rd → R1+2d+(d2) is given by

φ(x) = (1, x1, . . . , xd, x
2
1, . . . , x

2
d, x1x2, . . . , xd−1xd)

Can generalize to arbitrary multivariate polynomials
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Using feature maps with linear classifiers:

fw(x) =

{
1 if wTφ(x) > 0

0 if wTφ(x) ≤ 0

Can get decision boundaries that are not just (affine) hyperplanes!
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Not linearly separable
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Using φ(x) = (1, x1, x2, x
2
1, x

2
2, x1x2) −→ conic sections
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Question: How can we choose the feature map to use?
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Perceptron with feature map φ : Rd → Rp:

▶ Start with w = 0 (p-dimensional vector)

▶ While there exists (x, y) ∈ S such that fw(x) ̸= y:
▶ Let (x, y) ∈ S be any such example
▶ Update w:

w ←

{
w + φ(x) if y = 1

w − φ(x) if y = 0

▶ Return w
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Possible concern: feature space dimension p can be large

▶ Example: NIST dataset of handwritten digits
▶ d = 784 pixels → p = 308505 with quadratic feature map

▶ Large number of parameters

▶ Time to evaluate linear functions wTφ(x) may grow with p
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Kernel trick



Kernel trick is a way to use feature maps φ : Rd → Rp with linear models but
avoid (explicitly) doing the following:

▶ represent weight vector w ∈ Rp

▶ compute φ(x) for any x

Only works with certain learning algorithms, called kernel methods:

▶ Main requirement: algorithm only uses feature vectors through inner products

φ(x)Tφ(z)
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(Variant of) quadratic feature map φ : Rd → R1+2d+(d2):

φ(x) = (1,
√
2x1, . . . ,

√
2xd, x

2
1, . . . , x

2
d,
√
2x1x2, . . . ,

√
2xd−1xd)

▶ Näıve method for computing inner product φ(x)Tφ(z): time
▶ Form φ(x)
▶ Form φ(z)
▶ Compute φ(x)Tφ(z)

▶ Kernel trick: for any x, z ∈ Rd,

(1 + xTz)2 = φ(x)Tφ(z)

Time to evaluate:

(Similar trick/speed-up available for polynomial expansions of degree k > 2)
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Kernel Perceptron



Kernel Perceptron with feature map φ : Rd → Rp:

▶ Maintain “dual variable” α(i) for each example (x(i), y(i)) ∈ S

▶ Weight vector w is implicitly represented as

w =
∑
i

α(i)φ(x(i))

▶ Start with α(i) = 0 for all i

▶ While there exists (x, y) ∈ S such that fw(x) ̸= y:
▶ Let (x(i), y(i)) ∈ S be any such example
▶ Update α(i):

α(i) ←

{
α(i) + 1 if y = 1

α(i) − 1 if y = 0

▶ Return dual variables (α(i))ni=1
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Question: What is time required to compute fw(x) in Kernel Perceptron?

(For concreteness, assume φ is the quadratic feature expansion from before)
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Kernel ordinary least squares



Ordinary least squares with feature map φ : Rd → Rp

Want to solve normal equations

(ATA)w = ATb

for w ∈ Rp, but using kernel trick

A =

←− φ(x(1))T −→
...

←− φ(x(n))T −→


︸ ︷︷ ︸

n×p

, b =

y
(1)

...
y(n)


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Key fact: CS(AT) and NS(A) are orthogonal complements

Therefore, can just look for a solution of the form w = ATα for some α ∈ Rn

w = ATα =
∑
i

α(i)φ(x(i))
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Two steps of OLS:

1. Let b̂ be orthogonal projection of b to CS(A)

2. Solve Aw = b̂ for w
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Beyond polynomial expansions



Inner product can be regarded as “similarity function”

▶ E.g., text example

xj =

{
1 if article contains j-th vocabulary word

0 otherwise

So xTz = number of words the articles have in common
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Kernel methods can be used with any similarity function

k: X × X → R

as long as, for any n and any x(1), . . . , x(n) ∈ X , the n× n matrix

K =

k(x
(1), x(1)) · · · k(x(1), x(n))
...

. . .
...

k(x(n), x(1)) · · · k(x(n), x(n))


is positive semidefinite

(Such a similarity function is called a positive definite kernel)
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Aronszajn’s theorem: For any positive definite kernel k: X × X → R, there
exists a feature map φ : X → H such that

k(x, z) = φ(x)Tφ(z)

(H may be an infinite-dimensional space)
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Gaussian kernel (a.k.a. radial basis function (RBF) kernel)

k(x, z) = exp

(
−∥x− z∥2

2σ2

)
σ > 0 is bandwidth hyperparameter

Laplace kernel

k(x, z) = exp

(
−∥x− z∥

σ

)
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Comparison to nearest neighbors

▶ With Gaussian kernel, predictor is of the form

f̂(x) =
n∑

i=1

α(i) exp

(
−∥x− x(i)∥2

2σ2

)
▶ What happens if x is close to x(i) but far from all other x(j), j ̸= i?
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