Feature maps and kernels

COMS 4771 Fall 2023

Upgrading linear models



Upgrade linear models by being creative about features

» (Where do numerical features really come from anyway?)

» Example: text data
» One feature per word: but what numerical value to assign?

» Stemming: map words with the same “stem” to the same canonical form

» Stop word filtering: Ignore words like “the”, “a", etc.

» Not specific to linear models
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Suppose you already have numerical features z = (z1,...,74) € R? ...

» Instead of using z directly in linear model, can use ¢(z) for some feature map

p: R > R
(with p possibly different, perhaps larger, than d)

» Feature space (corresponding to ¢): image of ¢
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Any univariate polynomial in z of degree < k can be written as
wo(z) = wo + Wiz + wex? + -+ - 4+ wyx®

where feature map ¢: R — R**! is given by

o(x) = (1,z,2%, ...,2%)
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Any multivariate quadratic can be written as

T

w' ()

where feature map ¢: R? — RT24+(2) s given by

o) = (1,21,..., 24,75, ...,25, 0100, ..., Tq_1Tq)

Can generalize to arbitrary multivariate polynomials
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Using feature maps with linear classifiers:

{1 if wip(z) >0

fule) = 0 ifwpx)<0

Can get decision boundaries that are not just (affine) hyperplanes!
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Not linearly separable
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Question: How can we choose the feature map to use?
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Perceptron with feature map ¢: R? — R?:
» Start with w = 0 (p-dimensional vector)

» While there exists (x,y) € 8 such that f,(x) # y:

» Let (x,y) € 8§ be any such example
» Update w:

e w+p(x) ify=1
w—(x) ify=0

» Return w
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Possible concern: feature space dimension p can be large

» Example: NIST dataset of handwritten digits
» d = 784 pixels — p = 308505 with quadratic feature map

» Large number of parameters

» Time to evaluate linear functions w"y(x) may grow with p

Kernel trick
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Kernel trick is a way to use feature maps ¢: R? — RP with linear models but
avoid (explicitly) doing the following:

» represent weight vector w € RP

» compute p(x) for any x

Only works with certain learning algorithms, called kernel methods:

» Main requirement: algorithm only uses feature vectors through inner products

o) e(2)
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(Variant of) quadratic feature map o: R% — R'24+(2).

o(z) = (1, \/§x1, e \/§:Ud, :13%, . ,xfl, \/§x1$2, e ﬁxd_lxd)

» Naive method for computing inner product ¢(x)"¢(2): time

» Form ¢(z)
» Form ¢(z)
» Compute p(z)"¢(2)

» Kernel trick: for any z, z € RY,

(1+272)" = p(2)"o(2)

Time to evaluate:

(Similar trick /speed-up available for polynomial expansions of degree k > 2)
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Kernel Perceptron

Kernel Perceptron with feature map ¢: R? — RP:
» Maintain “dual variable” o) for each example (z(?,y®) € 8

» Weight vector w is implicitly represented as
w = Z aDp(z™)

» Start with o® = 0 for all 4

» While there exists (z,y) € 8 such that f,,(z) # y:
> Let (z(),y(®)) € 8 be any such example

» Update a(@:
a® —1 ify=0

» Return dual variables (a/!9)™,
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Question: What is time required to compute f,(x) in Kernel Perceptron?

(For concreteness, assume ¢ is the quadratic feature expansion from before)
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Kernel ordinary least squares
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Ordinary least squares with feature map ¢: R? — RP

Want to solve normal equations
(ATA)w = A"b

for w € RP, but using kernel trick

— )T — y
A= : , b=
— )T — y(™)

nxp
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Key fact: CS(A™) and NS(A) are orthogonal complements

Therefore, can just look for a solution of the form w = A"« for some o € R”
w=A"a = Z aDop(z®)
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Two steps of OLS:
1. Let b be orthogonal projection of b to CS(A)

2. Solve Aw = b for w
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Beyond polynomial expansions



Inner product can be regarded as “similarity function”

» E.g., text example

{1 if article contains j-th vocabulary word
Ij =

0 otherwise

So 2"z = number of words the articles have in common

Kernel methods can be used with any similarity function

ki X xX >R
as long as, for any n and any 2, ... 2™ € X, the n x n matrix
k(z®, zM) ..o k(z®) z™)
K = ; . :
k(z™, M) oo k(z™ 2™)

is positive semidefinite

(Such a similarity function is called a positive definite kernel)
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Aronszajn’s theorem: For any positive definite kernel k: X x X — R, there

exists a feature map ¢: X — H such that

k(z,2) = p(z)"p(2)

(H may be an infinite-dimensional space)

Gaussian kernel (a.k.a. radial basis function (RBF) kernel)

r — z||?
k(z,z) = exp (—%)

o > 0 is bandwidth hyperparameter

Laplace kernel

o

k(z, 2) = exp (_M>
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Comparison to nearest neighbors

» With Gaussian kernel, predictor is of the form

» What happens if « is close to z(*) but far from all other z(9), j £ 4?
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