
Optimization by gradient methods

COMS 4771 Fall 2023

Unconstrained optimization problems

Common form of optimization problem in machine learning:

min
w∈Rd

J(w)

We would like an algorithm that, given the objective function J , finds particular
setting of w so that J(w) is as small as possible

1 / 44

▶ What does it mean to be “given J”?

▶ What types of objective functions can we hope to minimize?

2 / 44

Review of multivariate differential calculus

A function J : Rd → R is differentiable if, for every u ∈ Rd, there is an affine
function A : Rd → R such that

lim
w→u

J(w)− A(w)

∥w − u∥
= 0

Affine function A is called the (best) affine approximation of J at u

J(w)

u

A may depend on u—i.e., possibly a different A for each u

3 / 44

About the affine approximation:

▶ Since A is affine, we can write it as

A(w) =

▶ m ∈ Rd is the “slope” (and specifies a linear function)

▶ b ∈ R is the “intercept”

▶ The intercept must be b = because

J(u) =

▶ So we can write A as

A(w) = J(u) +mT(w − u)

4 / 44

About the affine approximation:
Letting e(1), . . . , e(d) be standard coordinate basis for Rd, write m =

∑d
i=1mi e

(i)

Since A(w) = J(u) +mT(w − u) is best affine approximation of J at u,

0 = lim
t→0

J(u+ te(i))− A(u+ te(i))

|t|
= lim

t→0

J(u+ te(i))− (J(u) + tmi)

|t|

since u+ te(i) differs from u by t ∈ R in the i-th coordinate

Whether t approaches zero from left or right, we find

mi = lim
t→0

=

5 / 44

Vector-valued function (a.k.a. vector field) of all partial derivatives of J is called
the gradient of J , written ∇J : Rd → Rd

∇J(u) =
(

∂J

∂w1

(u), . . . ,
∂J

∂wd

(u)

)

6 / 44

Summary: If J : Rd → R is differentiable, then for any u ∈ Rd,

lim
w→u

J(w)− (J(u) +∇J(u)T(w − u))

∥w − u∥
= 0

7 / 44

Gradient descent

(Back to minw∈Rd J(w) where J is differentiable)

Question: Given candidate setting of variables w = u ∈ Rd, achieving objective
value J(u), how can we change u to achieve a lower objective value?

8 / 44

Upshot: Modify u by subtracting η∇J(u) for some η > 0

Caveat: Approximations in our argument are OK only if “change” is “small
enough” (which means η should be “small enough”)

9 / 44

Gradient descent: iterative method that attempts to minimize J : Rd → R
▶ Initialize w(0) ∈ Rd

▶ For iteration t = 1, 2, . . . until “stopping condition” is satisfied:

w(t) ← w(t−1) − ηt∇J(w(t−1)) (update rule)

▶ Return final w(t)

10 / 44

What’s missing in this algorithm description?

11 / 44

Examples of gradient descent algorithms

Sum of squared errors objective from OLS

J(w) =
∑

(x,y)∈S

(xTw − y)2

for dataset S from Rd × R
▶ Use linearity and chain rule to get formula for ∂J

∂wi
:

∂J

∂wi

(w) =
∑

(x,y)∈S

▶ Therefore
∇J(w) =

∑
(x,y)∈S

▶ Update rule in iteration t:

w(t) ← w(t−1) − ηt
∑

(x,y)∈S

12 / 44

Negative log-likelihood from logistic regression

J(w) =
∑

(x,y)∈S

(
ln(1 + ex

Tw)− yxTw
)

for dataset S from Rd × {0, 1}
▶ Use linearity and chain rule to get formula for ∂J

∂wi
:

∂J

∂wi

(w) =
∑

(x,y)∈S

▶ Therefore
∇J(w) =

∑
(x,y)∈S

▶ Update rule in iteration t:

w(t) ← w(t−1) − ηt
∑

(x,y)∈S

13 / 44

def learn(train_x, train_y, eta=0.1, num_steps=1000):

w = np.zeros(train_x.shape[1])

for t in range(num_steps):

w += eta * (train_y - 1/(1+np.exp(-train_x.dot(w)))).dot(train_x)

return w

14 / 44

Synthetic example: X ∼ N((0, 0), I), conditional distribution of Y given X = x
is Bernoulli(logistic(wTx)) for w = (3/2,−1/2)
▶ n = 100 training examples S

i.i.d.∼ (X, Y)

2 1 0 1 2
x1

2

1

0

1

2

x 2

class 0
class 1

15 / 44

ηt = 0.1 starting from w(0) = (0, 0)

1 2 3 4 5
iteration

54

56

58

60

62

64

66

68

70

ne
ga

tiv
e

lo
g-

lik
el

ih
oo

d

16 / 44

ηt = 0.1 starting from w(0) = (0, 0)

0.5 0.0 0.5 1.0 1.5 2.0 2.5
w1

1.0

0.8

0.6

0.4

0.2

0.0

0.2

0.4

w
2

0

1

2

3

4
5

64.2

66.0

67.8

69.6

71.4

73.2

75.0

76.8

17 / 44

ηt = 0.05 starting from w(0) = (0, 0)

0.5 0.0 0.5 1.0 1.5 2.0 2.5
w1

1.0

0.8

0.6

0.4

0.2

0.0

0.2

0.4

w
2

0

1 2 345

64.2

66.0

67.8

69.6

71.4

73.2

75.0

76.8

18 / 44

ηt = 0.01 starting from w(0) = (0, 0)

0.5 0.0 0.5 1.0 1.5 2.0 2.5
w1

1.0

0.8

0.6

0.4

0.2

0.0

0.2

0.4

w
2

0
1 2 3 45

64.2

66.0

67.8

69.6

71.4

73.2

75.0

76.8

19 / 44

Guarantees about gradient descent

Guarantee about gradient descent updates: If J is “smooth enough”, then
there is a choice for η > 0 such that, for any u ∈ Rd,

J(u− η∇J(u)) ≤ J(u)− η

2
∥∇J(u)∥2

20 / 44

Guarantee about gradient descent for convex objectives: If J is convex
and “smooth enough”, then there is a choice for η > 0 such that, for any
w(0) ∈ Rd, iterates of gradient descent w(1), w(2), . . . (with ηt = η) satisfy

lim
t→∞

J(w(t)) = min
w∈Rd

J(w)

21 / 44

Convex functions

A function J : Rd → R is convex if, for all u, v ∈ Rd, and all α ∈ [0, 1],

J((1− α)u+ αv) ≤ (1− α)J(u) + αJ(v)

not convex convex
u v u v

22 / 44

A differentiable function J : Rd → R is convex if, for all u,w ∈ Rd,

J(w) ≥ J(u) +∇J(u)T(w − u)

i.e., J lies above all of its affine approximations

J(w)

u

23 / 44

A continuously twice-differentiable function J : Rd → R is convex if, for all
u ∈ Rd, the d× d matrix of second derivatives of J at u is positive semidefinite

24 / 44

Operations that preserve convexity:

▶ Sum of convex functions J1 : Rd → R and J2 : Rd → R

J(w) = J1(w) + J2(w)

▶ Non-negative scalar multiple of a convex function J0 : Rd → R

J(w) = c J0(w), c ≥ 0

▶ Max of convex functions J1 : Rd → R and J2 : Rd → R

J(w) = max{J1(w), J2(w)}

▶ Composition of convex function J0 : Rk → R with affine mapping

J(w) = J0(Mw + b)

for M ∈ Rk×d and b ∈ Rk

25 / 44

Example: sum of squared errors J(w) =
∑

(x,y)∈S(x
Tw − y)2

26 / 44

Why convexity of J helps with gradient descent:

▶ Convexity ensures negative gradient −∇J(u) satisfies

(−∇J(u))T(w − u) ≥ J(u)− J(w)

for all u,w ∈ Rd

▶ Suppose w is minimizer of J , and you currently have u in hand

▶ Ideal direction to move in: δ = w − u

27 / 44

Stochastic gradient descent

Many objective functions in machine learning are decomposable, i.e., can be
written as sum

J(w) =
n∑

i=1

J (i)(w)

E.g., sum of losses on training examples

J (i)(w) = loss(fw(x
(i)), y(i))

Computational cost to compute ∇J(w)?

28 / 44

Alternative: instead of using

∇J(w) =
n∑

i=1

∇J (i)(w),

just use one of the terms in the sum (chosen uniformly at random)

Stochastic gradient descent (SGD) for J(w) =
∑n

i=1 J
(i)(w)

▶ Initialize w(0) ∈ Rd

▶ For iteration t = 1, 2, . . . until “stopping condition” is satisfied:

w(t) ← w(t−1) − ηt∇J (It)(w(t−1)) where It ∼ Unif({1, . . . , n})

▶ Return final w(t)

29 / 44

Some practical variants of SGD:
▶ Use sampling without replacement to choose I1, I2, . . . , In (i.e., go through

terms in a uniformly random order)
▶ Called SGD without replacement

▶ Instead of updating with gradient of single term, update with sum of
gradients for next B terms
▶ Called minibatch SGD; B is the minibatch size

30 / 44

Iris dataset, treating versicolor and virginica as a single class

▶ Maximizing log-likelihood in logistic regression with gradient descent and with
SGD (both using ηt = 0.01, starting from w(0) = (0, 0))

1 2 3 4 5
number of passes through dataset

82

80

78

76

lo
g-

lik
el

ih
oo

d

gradient descent
stochastic gradient descent

31 / 44

Practical considerations

▶ Conditioning

▶ Initialization w(0) ∈ Rd

32 / 44

▶ Choice of “step size” ηt > 0 (a.k.a. “learning rate”)

▶ Stopping condition

33 / 44

Automatic differentiation

Primary “technical work” in implementing gradient descent method:
Derive formula and write code for gradient computation ∇J
▶ Like doing long division by hand (i.e., without electronic calculators)

▶ Fairly straightforward, but can be tedious and easy to make mistakes

Automatic differentiation (autodiff):

▶ Method for automatically computing derivatives of functions specified by
straight-line programs

▶ Gradient of a function can be computed this way in the roughly same amount
of time it takes to compute the function itself (!)

34 / 44

Example: J(w) = xTw

▶ For each j = 1, . . . , d, compute

∂J

∂wj

(w) =

▶ Time to compute function and gradient:

35 / 44

Example: J(w) = g(f(w)) where f(w) = xTw and g(t) = logistic(t)

▶ For each j = 1, . . . , d, compute

∂J

∂wj

(w) =

▶ Time to compute function:

▶ Time to compute gradient: näıvely O(d2), but easy to get O(d)

36 / 44

Example: tower of exponentials J(w) = exp(exp(exp(· · · exp(xw) · · ·))
(for scalar x and w)

We only want single number (∂J
∂w

), but function is more complicated

∂

∂w
{ee

ee
ee
exw

} = ee
ee
ee
exw

ee
ee
ee

xw

ee
ee
exw

ee
ee

xw

ee
exw

ee
xw

exwx

▶ Time to compute tower of exponentials of height h:

▶ Time to compute derivative:

37 / 44

Example: J(w) = exp(xw + sin(xw)) + sin2(xw)w
(for scalar x and w)

8 6 4 2 0 2 4
w

0

20

40

60

80

100

120

J(w
)

x = 1.000
x = 1.025
x = 1.050
x = 1.075
x = 1.100

38 / 44

Write as J as a straight-line program: each line declares a new variable as a
function of inputs (e.g., w), constants (e.g., x), or previously defined variables

J(w) = exp(xw + sin(xw)) + sin2(xw)w

v1 := prod(x,w)

v2 := sin(v1)

v3 := sum(v1, v2)

v4 := square(v2)

v5 := exp(v3)

v6 := prod(v4, w)

v7 := sum(v5, v6)

x v1 v2 v3 v5 v7

v4 v6

w

prod sin sum exp sum

square prod

Computation directed acyclic graph G = (V,E)

39 / 44

All functions used in straight-line program must come with subroutines for
computing “local” partial derivative

Example:

v6 := prod(v4, w)

∂v6
∂v4

=
∂ prod(v4, w)

∂v4
= w

∂v6
∂w

=
∂ prod(v4, w)

∂w
= v4

40 / 44

Stage 1: Forward pass

▶ Compute value of each node given inputs in a forward pass through the G
(starting from inputs x and w)

▶ Save values at all intermediate nodes

Stage 2: Backward pass

▶ Compute partial derivative ∂v7
∂v

of output (v7) with respect to each node
variable v, evaluated at current node values

▶ Do this in reverse topological order; save intermediate results!

Chain rule:
∂v7
∂v

=
∑

(v,u)∈E

∂v7
∂u
· ∂u
∂v

41 / 44

▶ Time to compute function and partial derivatives: O(|V |+ |E|)
▶ Modern numerical software facilitates construction of computation graph

v
7

(
1
)

A
d
d
B
a
c
k
w
a
r
d
0

E
x
p
B
a
c
k
w
a
r
d
0

A
d
d
B
a
c
k
w
a
r
d
0

M
u
l
B
a
c
k
w
a
r
d
0

S
i
n
B
a
c
k
w
a
r
d
0

A
c
c
u
m
u
l
a
t
e
G
r
a
d

x

(
1
)

A
c
c
u
m
u
l
a
t
e
G
r
a
d M
u
l
B
a
c
k
w
a
r
d
0

w

(
1
)

P
o
w
B
a
c
k
w
a
r
d
0

42 / 44

Setup

import torch

x = torch.Tensor([1])

w = torch.Tensor([4])

w.requires_grad = True

def J(w):

v1 = x * w

v2 = torch.sin(v1)

v3 = v1 + v2

v4 = torch.pow(v2, 2)

v5 = torch.exp(v3)

v6 = v4 * w

v7 = v5 + v6

return v7

Gradient descent code

for t in range(22):

objective_value = J(w)

objective_value.backward()

with torch.no_grad():

w -= 0.1 * w.grad

w.grad.zero_()

43 / 44

Gradient descent on J(w), starting from w(0) = 4, using ηt = 0.1

0 5 10 15 20
iteration t

0

5

10

15

20

25

J(w
(t)

)

27.91

23.00

1.26 0.36 0.29 1.27 1.63 1.65

Converges to w = −1.847, J(w) = −1.649, ∂J
∂w

(w) = 0

44 / 44

	Unconstrained optimization problems
	Review of multivariate differential calculus
	Gradient descent
	Examples of gradient descent algorithms
	Guarantees about gradient descent
	Convex functions
	Stochastic gradient descent
	Practical considerations
	Automatic differentiation

