Optimization by gradient methods

COMS 4771 Fall 2023

Unconstrained optimization problems

Common form of optimization problem in machine learning:

i J
min - J(w)

We would like an algorithm that, given the objective function J, finds particular
setting of w so that J(w) is as small as possible

1/44

» What does it mean to be “given J"7?
» What types of objective functions can we hope to minimize?

2/44

Review of multivariate differential calculus

A function J: R? — R is differentiable if, for every u € RY, there is an affine
function A: RY — R such that

lim J(w) — A(w)

wou[jw — ull

=0

Affine function A is called the (best) affine approximation of J at u

A
v

A may depend on u—i.e., possibly a different A for each u

3/44

About the affine approximation:
» Since A is affine, we can write it as

A(w) =

» m € R? is the “slope” (and specifies a linear function)
» b€ Ris the “intercept”
» The intercept must be b = because

J(u) =

» So we can write A as

4/44

About the affine approximation:
Letting e, ... e be standard coordinate basis for R?, write m = ¢ m, e

Since A(w) = J(u) +m"(w — u) is best affine approximation of J at w,

0y — (4))y — :
0 — lim J(u+tel) — A(u + tel) — lim J(u+te”) — (J(u) 4+ tm;)
t—0 ‘t| t—0 |t|

since u + te® differs from u by ¢ € R in the i-th coordinate

Whether t approaches zero from left or right, we find

t—0

5/44

Vector-valued function (a.k.a. vector field) of all partial derivatives of .J is called
the gradient of J, written V.J: RY — R4

VJ(u) = (%(“>""’8—J(“)>

é)lUd

6/ 44

Summary: If J: R? — R is differentiable, then for any u € R¢,

o () = () + VI)" (w =)

=0
W lw =]

7/44

Gradient descent

(Back to min,,cga J(w) where J is differentiable)

Question: Given candidate setting of variables w = u € R?, achieving objective
value J(u), how can we change u to achieve a lower objective value?

8/44

Upshot: Modify u by subtracting nV.J(u) for some 1 > 0

Caveat: Approximations in our argument are OK only if “change” is “small
enough” (which means 7 should be “small enough”)

9/44

Gradient descent: iterative method that attempts to minimize J: RY — R
> Initialize w(©® € R4

» For iteration ¢ = 1,2,... until “stopping condition” is satisfied:

w — w1 — 5,V (WD) (update rule)

» Return final w®

10/ 44

What’s missing in this algorithm description?

11/44

Examples of gradient descent algorithms

Sum of squared errors objective from OLS

Tw) = 3 (@"w—yy

(z,y)€S

for dataset S from R% x R

» Use linearity and chain rule to get formula for

oJ
ow; (w) = Sj

(z,y)€S

VJ(w) = ;j

» Therefore

(z,y)€S
» Update rule in iteration ¢:

(z,y)€S

Negative log-likelihood from logistic regression

J(w) = Z (11’1(1 ety — yzL’Tw>

(z,y)€S

for dataset 8 from R? x {0, 1}

» Use linearity and chain rule to get formula for

0J
ow; (w) = y:

(z,y)€S
» Therefore

VJ(w) = y:

(z,y)€S
» Update rule in iteration ¢:

(z,y)€S

12/ 44

13/ 44

def learn(train_x, train_y, eta=0.1, num_steps=1000):
w = np.zeros(train_x.shape[1])
for t in range(num_steps):
w += eta * (train_y - 1/(l+np.exp(-train_x.dot(w)))).dot(train_x)
return w

14/ 44

Synthetic example: X ~ N((0,0), 1), conditional distribution of Y given X =z
is Bernoulli(logistic(w'z)) for w = (3/2,—1/2)

> n = 100 training examples § "< (X,Y)

X
class 0 y
class 1 X
2 1 x o)
X o x
0% o "
1 X 000 o
X X
% X o o X 0o o)
o~ O
X x @
X g 0 Xx %y XX Xy 0
0 X o OQ
oxx ~ X0%o o °©
x X xx O o X
&P
X X x0O O x (0]
_1 XO
X o) o
>$< o) (@] (o]
o)
) oK
-2 -1 0 1 2
X1

15/ 44

n, = 0.1 starting from w(® = (0, 0)

negative log-likelihood

n, = 0.1 starting from w(® = (0,0)

o

=

70 1
68 1
66 1
64 1
62
60 A
58 1
56 1
54 1 N
1 3 5
iteration
0.4 76.8
0.2 75.0
0.0 -73.2
-0.2 -71.4
-0.4 -69.6
-0.6 67.8
-0.8 66.0
1% 1.0 042
wh

16/ 44

17 /44

n; = 0.05 starting from w® = (0, 0)

04 76.8
0.2 75.0
0.0 -73.2

02 -71.4

S

04 -69.6

-0.6 67.8

-0.8 66.0

0 64.2
-0.5

1 = 0.01 starting from w® = (0,0)

04 76.8
0.2 75.0
0.0 r73.2

oo -71.4

=

04 -69.6
-0.6 67.8
-0.8 66.0

o | . 64.2
-0.5 0.0 0.5 1.0

w1

18/ 44

19/ 44

Guarantees about gradient descent

Guarantee about gradient descent updates: If J is “smooth enough”, then
there is a choice for n > 0 such that, for any u € R?.

J(w=nVJ(u) < J(u) = 2| VI ()]

20/ 44

Guarantee about gradient descent for convex objectives: If J is convex
and “smooth enough”, then there is a choice for n > 0 such that, for any
w® € R, iterates of gradient descent w™, w®), ... (with i, = n) satisfy

. (t) _ .
JYim J(w™) = min J(w)

21/44

Convex functions

A function J: R? — R is convex if, for all u,v € R%, and all a € [0, 1],

J(1—a)ut+av) < (1 —a)J(u) +aJ(v)

N

not convex convex

22/44

A differentiable function J: RY — R is convex if, for all u,w € R,

J(w) > J(u) + VJ(u) (w — u)

i.e., J lies above all of its affine approximations

A
v

23 /44

A continuously twice-differentiable function J: R? — R is convex if, for all
u € R?, the d x d matrix of second derivatives of J at u is positive semidefinite

24 /44
Operations that preserve convexity:
» Sum of convex functions J;: R - R and J,: R - R

J(w) = Ji(w) + Jo(w)
» Non-negative scalar multiple of a convex function Jy: R? — R
J(w) =cJy(w), ¢>0
» Max of convex functions J;: R - R and J5: RY - R
J(w) = max{J;(w), Jo(w)}
» Composition of convex function Jy: R¥ — R with affine mapping
J(w) = Jo(Mw + b)

for M € RF*? and b € R*

25 /44

Example: sum of squared errors J(w) =}, ycs(x"w — y)?

26 /44

Why convexity of J helps with gradient descent:

» Convexity ensures negative gradient —V .J(u) satisfies
(=VJ(w) (w—u) = J(u) = J(w)

for all u,w € R4

» Suppose w is minimizer of J, and you currently have u in hand

» |deal direction to move in: d = w — u

27 / 44

Stochastic gradient descent

Many objective functions in machine learning are decomposable, i.e., can be
written as sum

J(w) =" J(w)
i=1
E.g., sum of losses on training examples
T (w) = loss(fu(z), y")

Computational cost to compute V.J(w)?

28 /44

Alternative: instead of using

VJ(w) = zn: VIO (w),

just use one of the terms in the sum (chosen uniformly at random)

Stochastic gradient descent (SGD) for J(w) = >_" | J@(w)
> Initialize w® € R¢

» For iteration ¢ = 1,2,... until “stopping condition” is satisfied:

w w1 — v T (DY) where I, ~ Unif({1,...,n})

» Return final w®

20 /44

Some practical variants of SGD:

» Use sampling without replacement to choose I1, I, ..., I, (i.e., go through
terms in a uniformly random order)

» Called SGD without replacement

» Instead of updating with gradient of single term, update with sum of
gradients for next B terms

» Called minibatch SGD:; B is the minibatch size

30/ 44

Iris dataset, treating versicolor and virginica as a single class

» Maximizing log-likelihood in logistic regression with gradient descent and with
SGD (both using 1, = 0.01, starting from w(® = (0,0))

_76 i
3
8 —781
<
[J)
=
E?-—SO-
—821 —»— gradient descent
stochastic gradient descent

1 2 3 4 5
number of passes through dataset

31/44

Practical considerations

» Conditioning

» Initialization w(® ¢ R4

32/44

» Choice of “step size” 7; > 0 (a.k.a. “learning rate")

» Stopping condition

33/44

Automatic differentiation

Primary “technical work” in implementing gradient descent method:
Derive formula and write code for gradient computation V.J

» Like doing long division by hand (i.e., without electronic calculators)

» Fairly straightforward, but can be tedious and easy to make mistakes

Automatic differentiation (autodiff):

» Method for automatically computing derivatives of functions specified by
straight-line programs

» Gradient of a function can be computed this way in the roughly same amount
of time it takes to compute the function itself (1)

34 /44

Example: J(w) = x"w
» Foreach j =1,...,d, compute

O) =

ow; S

» Time to compute function and gradient:

35/44

Example: J(w) = g(f(w)) where f(w) = x"w and g(t) = logistic(t)
» Foreach j =1,...,d, compute

0J

» Time to compute function:

» Time to compute gradient: naively O(d?), but easy to get O(d)

36 /44

Example: tower of exponentials J(w) = exp(exp(exp(- - - exp(zw) - -))
(for scalar x and w)

We only want single number (g—i), but function is more complicated
rw Tw
e e® e’ zw
e e® e® e® e’ zw
0 o€ o€ e e o€ e pTW
—{e }=e e e e e e” e
ow

» Time to compute tower of exponentials of height h:

» Time to compute derivative:

Example: J(w) = exp(zw + sin(zw)) + sin®(xw)w
(for scalar x and w)

120 -

100 1

80 -

60 1

J(w)

40

20 1

37/44

38 /44

Write as J as a straight-line program: each line declares a new variable as a
function of inputs (e.g., w), constants (e.g., x), or previously defined variables

J(w) = exp(zw + sin(zw)) + sin®(zw)w

vy 1= prod(z, w) sum
Vg 1= sin(vq)

v3 1= sum(vy, vg)

vy 1= square(vs)

5 1= exp(vs)

vg 1= prod(vy, w)

square

v7 1= sum(vs, vg) Computation directed acyclic graph G = (V, F)

39 /44

All functions used in straight-line program must come with subroutines for
computing “local” partial derivative

Example:

ve 1= prod(vy, w)

Ovg Oprod(vy, w)

81)4 81)4 - v
Ove Oprod(vy,w) .,
ow ow -

40/ 44

Stage 1: Forward pass

» Compute value of each node given inputs in a forward pass through the G
(starting from inputs = and w)

» Save values at all intermediate nodes

Stage 2: Backward pass

» Compute partial derivative % of output (v7) with respect to each node
variable v, evaluated at current node values

» Do this in reverse topological order; save intermediate results!

: _ dur OJvr Ou
Chain rule: % = % . %

(vyu)eR

41 /44

» Time to compute function and partial derivatives: O(|V| + |E|)
» Modern numerical software facilitates construction of computation graph

"\
/

;

| PowBackward0 | | AddBackwardO |
MulBackwardO | | ExpBackward0 |

| AddBackward0 |
v7
(1)

MulBackwardO

| SinBackwa

w
(1)

| AccumulateGrad | | AccumulateGrad |

42 /44

Setup Gradient descent code

import torch for t in range(22):
objective_value = J(w)

x = torch.Tensor([1]) objective_value.backward()

w = torch.Tensor ([4]) with torch.no_grad():

w.requires_grad = True w —= 0.1 * w.grad

w.grad.zero_()

def J(w):

vl = x *x w

v2 = torch.sin(v1)

v3 = vl + v2

v4 = torch.pow(v2, 2)

v = torch.exp(v3)

ve = v4 *x w

v7i = vb + v6

return v7

43 /44

Gradient descent on J(w), starting from w® =4, using n, = 0.1

27.91

0 5 10 15 20
iteration t

Converges to w = —1.847, J(w) = —1.649, 9Z(w) =0

44 / 44

