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In-sample vs. out-of-sample performance



▶ Basic premise: training data is sample from population (or distribution)

▶ In-sample: what happens on training data

▶ Out-of-sample: what happens in overall population

▶ Learning algorithm: find classifier f with low training error rate êrr[f ]
▶ Will this classifier f also have low (true) error rate err[f ]?
▶ Basic answer from statistical learning theory: Yes, if classifier is chosen from a

“simple” function class F
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Training error rate of a fixed classifier



Suppose you chose classifier f before even looking at the training data

S = ((X(1), Y (1)), . . . , (X(n), Y (n)))
i.i.d.∼ (X, Y )
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Training error rate of learned classifier



Usually, we choose a classifier f̂ based on the training data S

Why can’t previous analysis apply?
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Two different random variables, êrr[f̂ ] and err[f̂ ]:

êrr[f̂ ] =
1

n

n∑
i=1

1{f̂(X(i)) ̸= Y (i)}, err[f̂ ] = Pr(f̂(X) ̸= Y | f̂)

Typically how different are they?

Conservative answer: if f̂ is chosen from F , then

Pr(|êrr[f̂ ]− err[f̂ ]| > ϵ) ≤ Pr(there exists f ∈ F s.t. |êrr[f ]− err[f ]| > ϵ)
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Union bound: For any events A and B,

Pr(A or B) = Pr(A ∪B) ≤ Pr(A) + Pr(B)
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Chernoff bound: for any fixed f : X → Y ,

Pr(|êrr[f ]− err[f ]| > ϵ) ≤ 2 exp
(
−2nϵ2

)
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Comparison to bound for a single f based on CLT:

▶ Doesn’t have factor of
√

err[f ](1− err[f ]) from single f CLT bound
▶ Can get this using advanced version of “Chernoff bound”

▶ Scary/weird constants
▶ But inside the logarithm (and maybe can be improved)

▶ Bound grows with
√
ln|F|

▶ Roughly like reducing n by a factor of # bits needed to represent a classifier
f ∈ F
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Counting number of behaviors



The cardinality of F is a crude measure of its “complexity”

▶ Example: F is all “threshold functions on R”

ft(x) = 1{x > t}

▶ There are uncountably-many such classifiers, one per t ∈ R
▶ But can only label a dataset of size n in n+ 1 different ways
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Better measure: number of behaviors on the unlabeled data x(1), . . . , x(n)

S(F ; (x(i))ni=1) = |{(f(x(1)), . . . , f(x(n))) : f ∈ F}|
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Examples:

▶ If F = all threshold functions on R,

S(F ; (x(i))ni=1) ≤ n+ 1

▶ If F = all linear classifiers in Rd,

S(F ; (x(i))ni=1) ≤ O(nd)
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Number of behaviors of large margin linear classifiers:

▶ Consider unlabeled data x(1), . . . , x(n) ∈ Rd satisfying ∥x(i)∥ ≤ 1

▶ Let F = homogeneous linear classifiers with margin γ > 0 on these n data
points (i.e., distance from x(i) to decision boundary is ≥ γ)

▶ What is the number of behaviors of F on (x(i))ni=1?
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