Decision tree learning
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Decision trees



Decision trees: nested if-then-else statements
» Can be relatively easy to understand (when not too large)
» Can have fast execution time (when not too large)

» Standard learning algorithm has some nice properties
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Decision trees vs nearest neighbors
» Both: try to exploit “local regularity”

» Nearest neighbors: memorize training data

» Decision trees: use training data to carve X" into regions
P . ..so that, for each region, there is a good constant prediction
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Example: iris dataset (using different features)
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Example: iris dataset (using different features)
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Structure of decision tree (in context of prediction):

» Rooted binary tree T’

» A non-leaf node is associated with a predicate involving single feature
» A leaf node is associated with a label from )

» Computing fr(z) = prediction of tree T" at z:
Start at root node

P If current node is leaf node: return associated label
P> Else if predicate at x is true: recurse on left child

» Else: recurse on right child
r1 <0.5484
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Top-down learning algorithm



Top-down learning algorithm: repeatedly modify tree to reduce its “cost”

» Simplest cost function (for classification): training error rate

1

err(fr; 8] = S|

> 1{fr(x) #y}

(z,y)ES

» (Classification tree = decision tree for classification problem)

» Initial tree: a single (leaf) node

» Repeat until done: make a modification to tree that reduces the cost the most
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Example: iris dataset (using different features)
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Allowed modifications to improve the tree:

» Replace a leaf node with a decision stump

Ty 15
(D) —e [ o<

» How many possible modifications are there?
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Example: iris dataset (using different features)
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Two steps of top-down algorithm on iris dataset
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When to stop modifying the tree? Some options:
» Stop when no modification leads to reduction in cost

» Stop when # leaves or depth reaches predetermined maximum

» Stop when each leaf node is “pure” (i.e., all training examples that “reach”
the leaf node have same label or same feature vector)
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Over-fitting training data

X2
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Training data

feature vector | label
(0,0) 0
(0,1) 1
(1,0) 1
(1,1) 0

Decision trees with 1 or 2 leaf nodes make 2 mistakes
(Myopic learner does not get past first step)

But the following makes no mistakes:

ZI?1§O
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sklearn. tree.DecisionTreeClassifier

class sklearn.tree.DecisionTreeClassifier(* criterion="gini', splitter='best', max_depth=None, min_samples_split=2,
min_samples_leaf=1, min_weight_fraction_leaf=0.0, max_features=None, random_state=None, max_leaf_nodes=None,

min_impurity_decrease=0.0, class_weight=None, ccp_alpha=0.0)

[source]

A decision tree classifier.

Read more in the User Guide.

Parameters:

criterion : {“gini”, “entropy”, “log_loss"}, default="gini"”
The function to measure the quality of a split. Supported criteria are “gini” for the Gini impurity and
“log_loss" and “entropy” both for the Shannon information gain, see Mathematical formulation.

splitter : {“best”, “random”}, default="best"”
The strategy used to choose the split at each node. Supported strategies are “best” to choose the best

split and “random” to choose the best random split.

max_depth : int, default=None
The maximum depth of the tree. If None, then nodes are expanded until all leaves are pure or until all leaves

contain less than min_samples_split samples.

min_samples_split : int or float, default=2
The minimum number of samples required to split an internal node:

« If int, then consider min_samples_split as the minimum number.
o If float, then min_samples_split is a fraction and ceil(min_samples_split * n_samples) are the
minimum number of samples for each split.

Changed in version 0.18: Added float values for fractions.
min sambles leaf : int or float. default=1 14 /22



Regression trees



Regression trees: decision trees for real-valued prediction, (usually) with squared
error as loss function

» Q: How to determine the labels associated with the leaf nodes?

» A: Average of labels among examples that “reach” the leaf node
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Model averaging



Suppose you have many possible predictors f1, fo, ..., fr
(or many possible ways to learn a predictor)

» Model selection: try to choose the best one

» Model averaging: combine them into a single predictor by averaging/voting

Simplest form: uniform model averaging

Fusl) = 7 3 Fula)

t=1

(For classification, use majority/plurality vote instead of averaging)
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E[(fus(X) = V)] = = S E[((X) - ¥)?)
mse‘[;,wg] =t ms?er[f t]
~ s 20 S E(X) ~ (X))

Vv
average disagreement

To generate many “similar” predcitors that may disagree often:

» Train each predictor on a different (random) subset of the training data
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Popular alternative: Bootstrap resampling of 8§ = ((z®,y®))r_,

» Independently sample 7' new datasets S, ..., 8, where
8 = ((X® y®dyyn - Unif(8)
» Differs from “sampling without replacement”

> Some examples in 8 can appear more than once in 8
> Some may not appear at all

18/22



Bagging = bootstrap resampling + model averaging
» Use bootstrap resampling to generate 8(1), 80

» Foreacht=1,....T":
Let f; = output of learning algorithm on s®)

» Combine fi,..., fr to form f,, using uniform model averaging
(Or fiote using plurality vote, in case of classification problems)
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from sklearn.tree import DecisionTreeClassifier
from sklearn.utils import resample
from scipy.stats import mode

def learn(train_x, train_y, num_trees=20):
return [DecisionTreeClassifier().fit(*resample(train_x, train_y))
— for i in range(num_trees)]

def predict(params, test_x):
predictions = np.array([tree.predict(test_x) for tree in params])
return mode(predictions, axis=0, keepdims=False) [0]
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Forest cover type dataset!
Problem: Create a program that, given cartographic data about a 30 x 30 meter
region of a forest, predict the type of forest cover

» Dataset: “[...] four wilderness areas located in the Roosevelt National Forest
of northern Colorado [...] minimal human-caused disturbances [...] forest
cover types are more a result of ecological processes rather than forest
management practices.”

» Classes: spruce/fir (1), lodgepole pine (2), ..., krummholz (7)

» Features (d = 54): elevation, slope, ..., distance to water, distance to roads,
..., amount of shade at 9am, amount of shade at 12pm, ...

» Number of training data: 464809; number of test data: 116203

https://archive.ics.uci.edu/dataset/31/covertype
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https://archive.ics.uci.edu/dataset/31/covertype

Results on cover type

» Decision tree with trained by top-down algorithm
P Stopped when all leaf nodes are pure
» Test error rate: 6.1%

» Bagging + top-down as before (7" = 20)

» Individual trees’ test error rates: between 7.7% and 8.0%
» Plurality vote classifier test error rate: 3.5%
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