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Decision trees



Decision trees: nested if-then-else statements

▶ Can be relatively easy to understand (when not too large)

▶ Can have fast execution time (when not too large)

▶ Standard learning algorithm has some nice properties
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Decision trees vs nearest neighbors

▶ Both: try to exploit “local regularity”

▶ Nearest neighbors: memorize training data

▶ Decision trees: use training data to carve X into regions
▶ . . . so that, for each region, there is a good constant prediction
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Example: iris dataset (using different features)
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Structure of decision tree (in context of prediction):

▶ Rooted binary tree T

▶ A non-leaf node is associated with a predicate involving single feature

▶ A leaf node is associated with a label from Y
▶ Computing fT (x) = prediction of tree T at x:

Start at root node
▶ If current node is leaf node: return associated label
▶ Else if predicate at x is true: recurse on left child
▶ Else: recurse on right child

x1 ≤ 0.5484

1x2 ≤ 0.34

2 3
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Top-down learning algorithm



Top-down learning algorithm: repeatedly modify tree to reduce its “cost”

▶ Simplest cost function (for classification): training error rate

êrr[fT ; S] =
1

|S|
∑

(x,y)∈S
1{fT (x) ̸= y}

▶ (Classification tree = decision tree for classification problem)

▶ Initial tree: a single (leaf) node

▶ Repeat until done: make a modification to tree that reduces the cost the most
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Example: iris dataset (using different features)
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Allowed modifications to improve the tree:

▶ Replace a leaf node with a decision stump

x? ≤ ?

? ?

1

T1 T2

▶ How many possible modifications are there?
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Two steps of top-down algorithm on iris dataset

x1 ≤ 0.5484

3 1

1

T1 T2

x1 ≤ 0.5484
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When to stop modifying the tree? Some options:
▶ Stop when no modification leads to reduction in cost

▶ Stop when # leaves or depth reaches predetermined maximum

▶ Stop when each leaf node is “pure” (i.e., all training examples that “reach”
the leaf node have same label or same feature vector)
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Over-fitting training data

x1

x2
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Training data
feature vector label

(0, 0) 0
(0, 1) 1
(1, 0) 1
(1, 1) 0

Decision trees with 1 or 2 leaf nodes make 2 mistakes
(Myopic learner does not get past first step)

But the following makes no mistakes:

x2 ≤ 0 x2 ≤ 0

x1 ≤ 0

1 1 00
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Regression trees



Regression trees: decision trees for real-valued prediction, (usually) with squared
error as loss function

▶ Q: How to determine the labels associated with the leaf nodes?

▶ A: Average of labels among examples that “reach” the leaf node
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Model averaging



Suppose you have many possible predictors f1, f2, . . . , fT
(or many possible ways to learn a predictor)

▶ Model selection: try to choose the best one

▶ Model averaging: combine them into a single predictor by averaging/voting

Simplest form: uniform model averaging

favg(x) =
1

T

T∑

t=1

ft(x)

(For classification, use majority/plurality vote instead of averaging)
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E
[
(favg(X)− Y )2

]
︸ ︷︷ ︸

mse[favg]

=
1

T

T∑

t=1

E
[
(ft(X)− Y )2

]
︸ ︷︷ ︸

mse[ft]

− 1

2T 2

T∑

s=1

T∑

t=1

E
[
(fs(X)− ft(X))2

]

︸ ︷︷ ︸
average disagreement

To generate many “similar” predcitors that may disagree often:

▶ Train each predictor on a different (random) subset of the training data
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Popular alternative: Bootstrap resampling of S = ((x(i), y(i)))ni=1

▶ Independently sample T new datasets S(1), . . . , S(T ), where

S(t) = ((X(t,i), Y (t,i)))ni=1
i.i.d.∼ Unif(S)

▶ Differs from “sampling without replacement”
▶ Some examples in S can appear more than once in S(t)

▶ Some may not appear at all
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Bagging = bootstrap resampling + model averaging

▶ Use bootstrap resampling to generate S(1), . . . , S(T )

▶ For each t = 1, . . . , T :
Let ft = output of learning algorithm on S(t)

▶ Combine f1, . . . , fT to form favg using uniform model averaging
(Or fvote using plurality vote, in case of classification problems)
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from sklearn.tree import DecisionTreeClassifier

from sklearn.utils import resample

from scipy.stats import mode

def learn(train_x, train_y, num_trees=20):

return [DecisionTreeClassifier().fit(*resample(train_x, train_y))

for i in range(num_trees)]↪→

def predict(params, test_x):

predictions = np.array([tree.predict(test_x) for tree in params])

return mode(predictions, axis=0, keepdims=False)[0]
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Forest cover type dataset1

Problem: Create a program that, given cartographic data about a 30× 30 meter
region of a forest, predict the type of forest cover

▶ Dataset: “[...] four wilderness areas located in the Roosevelt National Forest
of northern Colorado [...] minimal human-caused disturbances [...] forest
cover types are more a result of ecological processes rather than forest
management practices.”

▶ Classes: spruce/fir (1), lodgepole pine (2), . . . , krummholz (7)

▶ Features (d = 54): elevation, slope, . . . , distance to water, distance to roads,
. . . , amount of shade at 9am, amount of shade at 12pm, . . .

▶ Number of training data: 464809; number of test data: 116203

1https://archive.ics.uci.edu/dataset/31/covertype
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Results on cover type

▶ Decision tree with trained by top-down algorithm
▶ Stopped when all leaf nodes are pure
▶ Test error rate: 6.1%

▶ Bagging + top-down as before (T = 20)
▶ Individual trees’ test error rates: between 7.7% and 8.0%
▶ Plurality vote classifier test error rate: 3.5%
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