1 Test error rate

Suppose P is the probability distribution over $\mathcal{X} \times \mathcal{Y}$ of interest. The error rate of a classifier $f: \mathcal{X} \times \mathcal{Y}$ is defined by

$$\text{err}[f] = \Pr(f(X) \neq Y).$$

where $(X, Y) \sim P$.

Suppose you have a classifier $f: \mathcal{X} \rightarrow \mathcal{Y}$ and test data

$$(\tilde{X}^{(1)}, \tilde{Y}^{(1)}), \ldots, (\tilde{X}^{(m)}, \tilde{Y}^{(m)}) \sim_{\text{i.i.d.}} P,$$

and you would like to estimate the error rate of f. Let S denote the number of test examples on which f makes a prediction error, i.e.,

$$S = \sum_{i=1}^{m} 1\{f(\tilde{X}^{(i)}) \neq \tilde{Y}^{(i)}\}.$$

Then the test error rate of f, which we'll denote by $\tilde{\text{err}}[f]$, is equal to

$$\tilde{\text{err}}[f] = \frac{S}{m}.$$

The distribution of S is Binomial(m, θ), where $\theta = \text{err}[f]$. Therefore

$$\mathbb{E}(S) = m\theta, \quad \text{var}(S) = m\theta(1 - \theta),$$

and

$$\mathbb{E}(\tilde{\text{err}}[f]) = \theta = \text{err}[f], \quad \text{stddev}(\tilde{\text{err}}[f]) = \sqrt{\frac{\theta(1 - \theta)}{m}} = \sqrt{\frac{\text{err}[f](1 - \text{err}[f])}{m}}.$$
As $m \to \infty$, the central limit theorem implies that the binomial distribution converges to a normal distribution in a certain sense. In particular:

$$\sqrt{m} \cdot \frac{\hat{\text{err}}[f] - \text{err}[f]}{\sqrt{\text{err}[f](1 - \text{err}[f])}} \to \text{N}(0, 1).$$

Since the normal distribution contains about 95% of its probability mass within two standard deviations of its mean, we have (for large m), with probability $\approx 95%$,

$$\text{err}[f] \leq \hat{\text{err}}[f] + 2\sqrt{\frac{\text{err}[f](1 - \text{err}[f])}{m}},$$

$$\text{err}[f] \geq \hat{\text{err}}[f] - 2\sqrt{\frac{\text{err}[f](1 - \text{err}[f])}{m}}.$$

When these two inequalities hold, we can deduce upper- and lower-bounds on $\text{err}[f]$ in terms of $\hat{\text{err}}[f]$ and m by solving a quadratic equation. See this GitHub gist for how this can be done.

2 Is heads or tails is more likely?

Suppose you have a coin that you suspect is biased, and you would like to determine whether heads or tails is more likely. Letting θ denote the probability of heads:

- heads is more likely than tails if $\theta > 1/2$;
- tails is more likely than heads if $\theta < 1/2$.

If $\theta = 1/2$, we are fine with picking either heads or tails.

Without knowledge of θ, we attempt to make the determination based on the results of tossing the coin several times. Let S denote the number of tosses that are heads in n independent tosses of the coin. Our guess is

- heads if $S > n/2$;
- tails if $S \leq n/2$.

Suppose $\theta > 1/2$, so heads is more likely than tails. Our guess is incorrect if $S \leq n/2$. What is the probability of this event? In particular, how does it depend on the number of tosses?
For simplicity let us assume that \(n \) is even. We know that \(S \sim \text{Binomial}(n, \theta) \), so using the probability mass function for \(S \), we have

\[
\Pr(S \leq n/2) = \sum_{k=0}^{n/2} \binom{n}{k} \theta^k (1-\theta)^{n-k}
\]

\[
= \sum_{k=0}^{n/2} \binom{n}{k} 2^{-n} \left(\frac{\theta}{1/2} \right)^k \left(\frac{1-\theta}{1/2} \right)^n \left(\frac{1/2}{1-\theta} \right)^k
\]

\[
\leq \sum_{k=0}^{n/2} \binom{n}{k} 2^{-n} \left(\frac{\theta}{1/2} \right)^{n/2} \left(\frac{1-\theta}{1/2} \right)^n \left(\frac{1/2}{1-\theta} \right)^{n/2}
\]

\[
= (4\theta(1-\theta))^{n/2} \sum_{k=0}^{n/2} \binom{n}{k} 2^{-n}
\]

\[
\leq (4\theta(1-\theta))^{n/2} \sum_{k=0}^{n} \binom{n}{k} 2^{-n}
\]

\[
= (4\theta(1-\theta))^{n/2}.
\]

The first inequality above uses the facts that \(\theta > 1/2 \), and that each term in the summation has \(k \leq n/2 \). The final step uses the binomial theorem. Notice that, for any \(\theta \neq 1/2 \),

\[
4\theta(1-\theta) < 1.
\]

Hence

\[
\Pr(S \leq n/2) \leq (4\theta(1-\theta))^{n/2} = \exp(-cn)
\]

for

\[
c = \frac{1}{2} \ln \left(\frac{1}{4\theta(1-\theta)} \right) > 0.
\]

The probability that our guess is incorrect is exponentially small in the number of tosses \(n \).

The case where \(\theta < 1/2 \) can be handled in a completely symmetric manner.