Suppose \((X, Y, A)\) is a triple of random variables, where \(X\) is a feature vector, \(Y\) is a \(\{0, 1\}\)-valued label, and \(A\) is a \(\{0, 1\}\)-valued random variable indicating subgroup membership. (Here, it is possible that \(A\) depends on \((X, Y)\).) Your training and test data are sampled from a source distribution in which
\[
\Pr_{\text{src}}(A = 0) \ll \Pr_{\text{src}}(A = 1),
\]
but in the target distribution,
\[
\Pr_{\text{tgt}}(A = 0) = \Pr_{\text{tgt}}(A = 1) = \frac{1}{2}.
\]

A common approach to dealing with this sort of distribution shift is to use importance weights. That is, for any example with \(A = a\), we assign it an importance weight of
\[
i_a = \frac{1/2}{\Pr_{\text{src}}(A = a)}.
\]
The importance weight is then used to scale any quantity of interest in an (empirical) expectation computation. (It functions as a “change of measure”.)

For example, suppose test data \((\tilde{X}^{(1)}, \tilde{Y}^{(1)}, \tilde{A}^{(1)}), \ldots, (\tilde{X}^{(m)}, \tilde{Y}^{(m)}, \tilde{A}^{(m)})\) are drawn iid from the source distribution. The test error rate of a classifier \(f\) is
\[
\frac{1}{m} \sum_{i=1}^{m} \mathbb{1}\{f(\tilde{X}^{(i)}) \neq \tilde{Y}^{(i)}\}.
\]
This quantity estimates the error rate of \(f\) under the source distribution. The importance-weighted test error rate of a classifier \(f\) is
\[
\frac{1}{m} \sum_{i=1}^{m} i_{\tilde{A}^{(i)}} \cdot \mathbb{1}\{f(\tilde{X}^{(i)}) \neq \tilde{Y}^{(i)}\}.
\]
What does this quantity estimate? The expectation of the importance-weighted test error rate is

$$
E_{\text{src}} \left[\frac{1}{m} \sum_{i=1}^{m} i_{\tilde{A}(i)} \cdot 1 \{ f(\tilde{X}(i)) \neq \tilde{Y}(i) \} \right]
$$

$$
= E_{\text{src}} \left[i_{\tilde{A}(1)} \cdot 1 \{ f(\tilde{X}(1)) \neq \tilde{Y}(1) \} \right]
$$

$$
= \sum_{a \in \{0, 1\}} \Pr_{\text{src}}(\tilde{A}(1) = a) \cdot E_{\text{src}} \left[\frac{1/2}{\Pr_{\text{src}}(\tilde{A}(1) = a)} \cdot 1 \{ f(\tilde{X}(1)) \neq \tilde{Y}(1) \ \mid \ \tilde{A}(1) = a \} \right]
$$

$$
= \sum_{a \in \{0, 1\}} \frac{1}{2} \cdot E_{\text{src}} \left[1 \{ f(\tilde{X}(1)) \neq \tilde{Y}(1) \ \mid \ \tilde{A}(1) = a \} \right].
$$

If $A = Y$, then this is called the \textit{balanced error rate} of f under the source distribution. If we additionally assume that the conditional distributions of (X, Y) given $A = a$ under the source distribution is the same as that under the target distribution (for each $a \in \{0, 1\}$), then we can further conclude that

$$
\sum_{a \in \{0, 1\}} \frac{1}{2} \cdot E_{\text{src}} \left[1 \{ f(\tilde{X}(1)) \neq \tilde{Y}(1) \ \mid \ \tilde{A}(1) = a \} \right]
$$

$$
= \sum_{a \in \{0, 1\}} \Pr_{\text{tgt}}(\tilde{A}(1) = a) \cdot E_{\text{tgt}} \left[1 \{ f(\tilde{X}(1)) \neq \tilde{Y}(1) \ \mid \ \tilde{A}(1) = a \} \right]
$$

$$
= E_{\text{tgt}} \left[1 \{ f(\tilde{X}(1)) \neq \tilde{Y}(1) \} \right],
$$

which is the error rate of f under the target distribution.