Hyperparameters and Model Selection
Basic supervised learning framework assumes that there is a single ML algorithm that we will use.

In practice, we may want to consider many different ML algorithms.
Many ML algorithms have hyperparameters:
parameters of ML algorithm \(\neq\) parameters of predictor learned by ML algorithm

E.g., choice of stopping criterion in greedy heuristic for decision trees

Variations in feature representations & predictor templates also regarded as hyperparameters
E.g., allowed forms of predicates in decision trees

Question:
Is there a data-driven way to set hyperparameters?

Answer:
"Model selection" (a.k.a. hyperparameter tuning)

Pretend ML algorithm with different hyperparameter settings are different ML algorithms

\(A_1, A_2, A_3, \ldots\)

Given the same input data, they would learn some (possibly different) predictors \(f_1, f_2, f_3, \ldots\)

How do we decide which ML algorithm to use?
Many ML algorithms have **hyperparameters:**
parameters of ML algorithm (≠ parameters of predictor learned by ML algorithm)

- E.g., choice of stopping criterion in greedy heuristic for decision trees
Hyperparameters and “model selection”

- Many ML algorithms have **hyperparameters**: parameters of ML algorithm \(\neq \) parameters of predictor learned by ML algorithm
 - E.g., choice of stopping criterion in greedy heuristic for decision trees
 - Variations in feature representations & predictor templates also regarded as hyperparameters

Question: Is there a data-driven way to set hyperparameters?

Answer: “Model selection” (a.k.a. hyperparameter tuning)

- Pretend ML algorithm with different hyperparameter settings are different ML algorithms
- Given the same input data, they would learn some (possibly different) predictors

How do we decide which ML algorithm to use?
Hyperparameters and “model selection”

- Many ML algorithms have **hyperparameters**: parameters of ML algorithm (\neq parameters of predictor learned by ML algorithm)
 - E.g., choice of stopping criterion in greedy heuristic for decision trees
- Variations in feature representations & predictor templates also regarded as hyperparameters
 - E.g., allowed forms of predicates in decision trees
Many ML algorithms have **hyperparameters**: parameters of ML algorithm (\neq parameters of predictor learned by ML algorithm)

- E.g., choice of stopping criterion in greedy heuristic for decision trees
- Variations in feature representations & predictor templates also regarded as hyperparameters
 - E.g., allowed forms of predicates in decision trees

Question: Is there a data-driven way to set hyperparameters?
Many ML algorithms have **hyperparameters**: parameters of ML algorithm (≠ parameters of predictor learned by ML algorithm)

- E.g., choice of stopping criterion in greedy heuristic for decision trees
- Variations in feature representations & predictor templates also regarded as hyperparameters
 - E.g., allowed forms of predicates in decision trees

Question: Is there a data-driven way to set hyperparameters?

Answer: “**Model selection**” (a.k.a. **hyperparameter tuning**)

- Pretend ML algorithm with different hyperparameter settings are **different ML algorithms** A_1, A_2, A_3, \ldots

- Given the same input data, they would learn some (possibly different) predictors f_1, f_2, f_3, \ldots

- How do we decide which ML algorithm to use?
Problematic approach to model selection

A problematic approach:
1. Run ML algorithms A_1, A_2, A_3, \ldots on training data to get predictors f_1, f_2, f_3, \ldots.
2. Evaluate f_1, f_2, f_3, \ldots on test data, and return the best predictor (e.g., lowest test error rate).

Flaw: The "test data" are being used for training.

Evaluation of learned predictor is carried out on test data.
A problematic approach:

1. Run ML algorithms A_1, A_2, A_3, \ldots on training data to get predictors f_1, f_2, f_3, \ldots

2. Evaluate f_1, f_2, f_3, \ldots on test data, and return the best predictor (e.g., lowest test error rate)

Evaluation of learned predictor is carried out on test data
Problematic approach to model selection

A problematic approach:

1. Run ML algorithms A_1, A_2, A_3, \ldots on training data to get predictors f_1, f_2, f_3, \ldots
2. Evaluate f_1, f_2, f_3, \ldots on test data, and return the best predictor (e.g., lowest test error rate)

Flaw: The “test data” are being used for training
The end
Cross Validation
Model selection by cross validation

Cross validation: model selection method that simulates training/testing using only training data
Model selection by cross validation

Cross validation: model selection method that simulates training/testing using only training data

1. Given training data S, split into two parts, S_1 and S_2 in some manner (e.g., randomly)
Model selection by cross validation

Cross validation: model selection method that simulates training/testing using only training data

1. Given training data S, split into two parts, S_1 and S_2 in some manner (e.g., randomly)
2. Run ML algorithms A_1, A_2, A_3, \ldots on S_1 to get predictors f_1, f_2, f_3, \ldots
Model selection by cross validation

Cross validation: model selection method that simulates training/testing using only training data

1. Given training data S, split into two parts, S_1 and S_2 in some manner (e.g., randomly)
2. Run ML algorithms A_1, A_2, A_3, \ldots on S_1 to get predictors f_1, f_2, f_3, \ldots
3. Evaluate f_1, f_2, f_3, \ldots on S_2 (e.g., in terms of error rate on S_2)
 - Let $i^* \in \{1, 2, \ldots\}$ be the index of the best predictor as above
Model selection by cross validation

Cross validation: model selection method that simulates training/testing using only training data

1. Given training data S, split into two parts, S_1 and S_2 in some manner (e.g., randomly)
2. Run ML algorithms A_1, A_2, A_3, \ldots on S_1 to get predictors f_1, f_2, f_3, \ldots
3. Evaluate f_1, f_2, f_3, \ldots on S_2 (e.g., in terms of error rate on S_2)
 ▶ Let $i^* \in \{1, 2, \ldots\}$ be the index of the best predictor as above
4. Return A_{i^*} as the selected ML algorithm

![Diagram of cross validation process](image)
Model selection by cross validation

Cross validation: model selection method that simulates training/testing using only training data

1. Given training data \(S \), split into two parts, \(S_1 \) and \(S_2 \) in some manner (e.g., randomly)
2. Run ML algorithms \(A_1, A_2, A_3, \ldots \) on \(S_1 \) to get predictors \(f_1, f_2, f_3, \ldots \)
3. Evaluate \(f_1, f_2, f_3, \ldots \) on \(S_2 \) (e.g., in terms of error rate on \(S_2 \))
 - Let \(i^* \in \{1, 2, \ldots \} \) be the index of the best predictor as above
4. Return \(A_{i^*} \) as the selected ML algorithm

(Final step: Run \(A_{i^*} \) on the training data to get final predictor \(f \), which can be evaluated on test data)
Variants of cross validation: \(K \)-fold cross validation

\(K \)-fold cross validation:

- Each \(A_i \) is run and evaluated \(K \) times
- Select the \(A_i \) with best average evaluation
Variants of cross validation: Leave-one-out cross validation

Leave-one-out cross validation:

▶ K-fold cross validation with $K = n$
▶ Pro: A_i is always run on $n - 1$ of the training data
▶ Con: Running each algorithm n times can be expensive
Consider the training/testing setup that makes sense for the application
Domain-specific cross validation

Consider the training/testing setup that makes sense for the application

Example: Time-ordered data

- Suppose there is reason to believe that examples from the “past” are not interchangeable with examples from the “future”
Consider the training/testing setup that makes sense for the application

Example: Time-ordered data

- Suppose there is reason to believe that examples from the “past” are not interchangeable with examples from the “future”
 - I.e., only makes sense to train on examples from “past”, and test on examples from “future”
Domain-specific cross validation

Consider the training/testing setup that makes sense for the application

Example: Time-ordered data

- Suppose there is reason to believe that examples from the “past” are not interchangeable with examples from the “future”
 - I.e., only makes sense to train on examples from “past”, and test on examples from “future”

Which form of cross validation makes sense?
For model selection, cross validation simulates training/testing **using only training data**
For model selection, cross validation simulates training/testing using only training data

- Useful whenever ML algorithm has hyperparameters (pretty much all of them)
Discussion

For model selection, cross validation simulates training/testing using only training data

- Useful whenever ML algorithm has hyperparameters (pretty much all of them)
- **Ideally**: Test data is never looked at until development is done and it is time for evaluation
Discussion

For model selection, cross validation simulates training/testing using only training data

- Useful whenever ML algorithm has hyperparameters (pretty much all of them)
- **Ideally:** Test data is never looked at until development is done and it is time for evaluation
- **In practice:** Development process is iterative, and there is inevitably “leakage” of information from test data into development choices
For model selection, cross validation simulates training/testing **using only training data**

- Useful whenever ML algorithm has hyperparameters (pretty much all of them)
- **Ideally:** Test data is never looked at until development is done and it is time for evaluation
- **In practice:** Development process is iterative, and there is inevitably “leakage” of information from test data into development choices
 - **Where possible:** Periodically acquire new test data so that reliable evaluations are possible
The end