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Margins

Let S be a collection of labeled examples from R% x {—1,+1}. We say S is linearly separable if there exists
w € R such that
min y(w,x) > 0,
(z,y)€s e )
and we call w a linear separator for S.

The (minimum) margin of a linear separator w for S is the minimum distance from z to the hyperplane
orthogonal to w, among all (z,y) € S. Note that this notion of margin is invariant to positive scaling of w. If
we rescale w so that
min y(w,x) = 1,
(w,y)es ut )
then this minimum distance is 1/||w]||2. Therefore, the linear separator with the largest minimum margin is
described by the following mathematical optimization problem:

S TS
min —||W
min <3

st. ylw,xy>1, (z,y)€S.

Perceptron algorithm

The Perceptron algorithm is given as follows. The input to the algorithm is a collection S of labeled examples
from RY x {—1,+1}.
 Begin with @, := 0 € R?
e Fort=1,2,...:
— If there is a labeled example in S (call it (x¢,y¢)) such that y, (@, ;) < 0, then set W1 := Dy +yrae.
— Else, return ;.

Theorem. Let S be a collection of labeled examples from R? x {—1,+1}. Suppose there exists a vector
w, € R such that

min Wy, ) = 1.
sV )

Then Perceptron on input S halts after at most ||w,||3L? loop iterations, where L := max(, ,)es |||z

Proof. Suppose Perceptron does not exit the loop in the ¢-th iteration. Then there is a labeled example
(¢, y¢) € S such that

Ye({wi, z4) = 1,

Yi (e, z1) < 0.
We bound (wy,wiy1) from above and below to deduce a bound on the number of loop iterations. First, we
bound (w,, @) from below:

(Wi, Weg1) = (Wo, We) + Y (We, T4) > (Wi, W) + 1.



Since W, = 0, we have
<w*7wt+1> 2 t.

We now bound (wy, W¢+1) from above. By Cauchy-Schwarz,

(Wi Wep1) < [Jwall2l| g2
Also,
[ Wes1)13 = 10el|3 + 2ye (e, 2e) + y2|2el|3 < ||| + L2

Since ||@1]|2 = 0, we have
el < L2,
$0
<w*7wt+1> S ||w*H2L\/£

Combining the upper and lower bounds on (wy, W:1) shows that
t< <w*7wt+1> < ”w*HQL\/Ev

which in turn implies the inequality ¢ < ||w,]||3L?. 1

Online Perceptron algorithm

The Online Perceptron algorithm is given as follows. The input to the algorithm is a sequence
(x1,91), (x2,92), . .. of labeled examples from R? x {—1,+1}.

« Begin with @, := 0 € R%

e Fort=1,2,...:
— If ye (W, 2¢) <0, then set Wiy := Wr + Y.
- EISG, wt-{-l = 12},5.

We say that Online Perceptron makes a mistake in round ¢ if y; (¢, ) < 0.

Theorem. Let (x1,%1), (22,¥2), ... be a sequence of labeled examples from R? x {—1,+41} such that there
exists a vector w, € RY satisfying

timin YWy, x¢) = 1.
Then Online Perceptron on input (x1,y1), (z2,¥2),... makes at most |w,||3L? mistakes, where L :=
maxi—1,2, .. [[€l2-

Proof. The proof of this theorem is essentially the same as the proof of the iteration bound for Perceptron. I

Online Perceptron may be applied to a collection of labeled examples S by considering the labeled examples
in S in any (e.g., random) order. If S is linearly separable, then the number of mistakes made by Online
Perceptron can be bounded using the theorem.

However, Online Perceptron is also useful when S is not linearly separable. This is especially notable in
comparison to Perceptron, which never terminates if S is not linearly separable.

Theorem. Let (z1,y1), (x2,%2), - .. be a sequence of labeled examples from R? x {—1,41}. Online Perceptron
on input (z1,y1), (£2,¥2), ... makes at most

min | BE2 4 oo L |5 s adp) + 3w, ai),p0)
* teM teM

mistakes, where L := max;—1 2, ||¢||2, M is the set of rounds on which Online Perceptron makes a mistake,
and £(9,y) := [1 — gy]+ = max{0,1 — gy} is the hinge loss of § when y is the correct label.



Proof Fix any w, € R? Consider any round ¢ in which Online Perceptron makes a mistake. Let
M :={1,...,t} N M and M; := |M,|. We will bound (w,, W;+1) from above and below to deduce a bound
on M, the number of mistakes made by Online Perceptron through the first ¢ rounds. First we bound
(w4, Wyg1) from above. By Cauchy-Schwarz,

(we, We1) < Jwellzl|Dega]o-

Moreover,
o113 = 10013 + 2ye (e, w0) + v el < el + L2.

Since w; = 0, we have
[t < LM,

and thus
(Wi, Wip1) < [[well2 L/ M.

We now bound {(w,, wy41) from below:

(Woe, Wig1) = (Wi, We) + 1 = [1 — ye(wy, x4)]
> (wy, We) + 1 = [1 = ye(ws, z4)] 4
- <w*a UA}t> + 1- €(<w*amt>7yt)a

Since w; = 0,
<w*,ﬁ)t+1> > M; — Hy,

where

H, = Z (W 1), Yt)-

teEM;

Combining the upper and lower bounds on (wy, W:1) shows that

M, — Hy < (Wi, Weg1) < ||wa|l2L/ My,

ie.,

Mt — H’LU*”QL\/ Mt — Ht S 0
This inequality is quadratic in v/M;. By solving it!, we deduce the bound

1 1
My < Slwd 30 + 5 oo L/l |32 + 4, + H,

which can be further loosened to the following (slightly more interpretable) bound:

My < ||wil3L2 + w||2Ly/Hy + H,.

The claim follows. |

1The inequality is of the form z2 — bz — ¢ < 0 for some non-negative b and c. This implies that < (b+ Vb2 +4c)/2, and

hence x2 < (b2 4 2bvV/b2 + 4c 4 b? 4 4¢) /4. We can then use the fact that /A + B < VA + /B for any non-negative A and B to
deduce 22 < b2 + by/c + c.
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