Perceptron and Online Perceptron

Daniel Hsu (COMS 4771)

Margins

Let S be a collection of labeled examples from $\mathbb{R}^d \times \{-1, +1\}$. We say S is *linearly separable* if there exists $w \in \mathbb{R}^d$ such that

$$\min_{(x,y)\in S} y\langle w, x \rangle > 0,$$

and we call w a *linear separator* for S.

The *(minimum)* margin of a linear separator w for S is the minimum distance from x to the hyperplane orthogonal to w, among all $(x, y) \in S$. Note that this notion of margin is invariant to positive scaling of w. If we rescale w so that

$$\min_{(x,y)\in S} y\langle w, x\rangle = 1,$$

then this minimum distance is $1/||w||_2$. Therefore, the linear separator with the largest minimum margin is described by the following mathematical optimization problem:

$$\begin{split} \min_{w \in \mathbb{R}^d} & \frac{1}{2} \|w\|_2^2 \\ \text{s.t.} & y \langle w, x \rangle \geq 1, \quad (x,y) \in S. \end{split}$$

Perceptron algorithm

The Perceptron algorithm is given as follows. The input to the algorithm is a collection S of labeled examples from $\mathbb{R}^d \times \{-1, +1\}$.

- Begin with $\hat{w}_1 := 0 \in \mathbb{R}^d$.
- For t = 1, 2, ...:
 - If there is a labeled example in S (call it (x_t, y_t)) such that $y_t \langle \hat{w}_t, x_t \rangle \leq 0$, then set $\hat{w}_{t+1} := \hat{w}_t + y_t x_t$. - Else, return \hat{w}_t .

Theorem. Let S be a collection of labeled examples from $\mathbb{R}^d \times \{-1, +1\}$. Suppose there exists a vector $w_* \in \mathbb{R}^d$ such that

$$\min_{(x,y)\in S} y\langle w_\star, x\rangle = 1.$$

Then Perceptron on input S halts after at most $||w_{\star}||_2^2 L^2$ loop iterations, where $L := \max_{(x,y) \in S} ||x||_2$.

Proof. Suppose Perceptron does not exit the loop in the *t*-th iteration. Then there is a labeled example $(x_t, y_t) \in S$ such that

$$y_t \langle w_\star, x_t \rangle \ge 1, y_t \langle \hat{w}_t, x_t \rangle \le 0.$$

We bound $\langle w_{\star}, w_{t+1} \rangle$ from above and below to deduce a bound on the number of loop iterations. First, we bound $\langle w_{\star}, \hat{w}_t \rangle$ from below:

$$\langle w_{\star}, \hat{w}_{t+1} \rangle = \langle w_{\star}, \hat{w}_{t} \rangle + y_{t} \langle w_{\star}, x_{t} \rangle \ge \langle w_{\star}, \hat{w}_{t} \rangle + 1.$$

Since $\hat{w}_1 = 0$, we have

$$\langle w_{\star}, \hat{w}_{t+1} \rangle \geq t.$$

We now bound $\langle w_{\star}, \hat{w}_{t+1} \rangle$ from above. By Cauchy-Schwarz,

$$\langle w_{\star}, \hat{w}_{t+1} \rangle \leq \|w_{\star}\|_2 \|\hat{w}_{t+1}\|_2.$$

Also,

$$\|\hat{w}_{t+1}\|_2^2 = \|\hat{w}_t\|_2^2 + 2y_t \langle \hat{w}_t, x_t \rangle + y_t^2 \|x_t\|_2^2 \le \|\hat{w}_t\|_2^2 + L^2.$$

Since $\|\hat{w}_1\|_2 = 0$, we have

 $\|\hat{w}_{t+1}\|_2^2 \le L^2 t,$

 \mathbf{SO}

$$\langle w_\star, \hat{w}_{t+1} \rangle \le \|w_\star\|_2 L \sqrt{t}.$$

Combining the upper and lower bounds on $\langle w_{\star}, \hat{w}_{t+1} \rangle$ shows that

$$t \le \langle w_\star, \hat{w}_{t+1} \rangle \le \|w_\star\|_2 L \sqrt{t}$$

which in turn implies the inequality $t \leq ||w_{\star}||_2^2 L^2$.

Online Perceptron algorithm

The Online Perceptron algorithm is given as follows. The input to the algorithm is a sequence $(x_1, y_1), (x_2, y_2), \ldots$ of labeled examples from $\mathbb{R}^d \times \{-1, +1\}$.

- Begin with $\hat{w}_1 := 0 \in \mathbb{R}^d$.
- For $t = 1, 2, \ldots$ - If $y_t \langle \hat{w}_t, x_t \rangle \leq 0$, then set $\hat{w}_{t+1} := \hat{w}_t + y_t x_t$. - Else, $\hat{w}_{t+1} := \hat{w}_t$.

We say that Online Perceptron makes a *mistake* in round t if $y_t \langle \hat{w}_t, x_t \rangle \leq 0$.

Theorem. Let $(x_1, y_1), (x_2, y_2), \ldots$ be a sequence of labeled examples from $\mathbb{R}^d \times \{-1, +1\}$ such that there exists a vector $w_{\star} \in \mathbb{R}^d$ satisfying

$$\min_{t=1,2} \quad y_t \langle w_\star, x_t \rangle = 1.$$

Then Online Perceptron on input $(x_1, y_1), (x_2, y_2), \ldots$ makes at most $||w_*||_2^2 L^2$ mistakes, where $L := \max_{t=1,2,\ldots} ||x_t||_2$.

Proof. The proof of this theorem is essentially the same as the proof of the iteration bound for Perceptron.

Online Perceptron may be applied to a collection of labeled examples S by considering the labeled examples in S in any (e.g., random) order. If S is linearly separable, then the number of mistakes made by Online Perceptron can be bounded using the theorem.

However, Online Perceptron is also useful when S is not linearly separable. This is especially notable in comparison to Perceptron, which never terminates if S is not linearly separable.

Theorem. Let $(x_1, y_1), (x_2, y_2), \ldots$ be a sequence of labeled examples from $\mathbb{R}^d \times \{-1, +1\}$. Online Perceptron on input $(x_1, y_1), (x_2, y_2), \ldots$ makes at most

$$\min_{w_{\star} \in \mathbb{R}^{d}} \left[\|w_{\star}\|_{2}^{2} L^{2} + \|w_{\star}\|_{2} L \sqrt{\sum_{t \in \mathcal{M}} \ell(\langle w_{\star}, x_{t} \rangle, y_{t})} + \sum_{t \in \mathcal{M}} \ell(\langle w_{\star}, x_{t} \rangle, y_{t}) \right]$$

mistakes, where $L := \max_{t=1,2,\dots} \|x_t\|_2$, \mathcal{M} is the set of rounds on which Online Perceptron makes a mistake, and $\ell(\hat{y}, y) := [1 - \hat{y}y]_+ = \max\{0, 1 - \hat{y}y\}$ is the *hinge loss* of \hat{y} when y is the correct label.

Proof. Fix any $w_{\star} \in \mathbb{R}^d$. Consider any round t in which Online Perceptron makes a mistake. Let $\mathcal{M}_t := \{1, \ldots, t\} \cap \mathcal{M}$ and $M_t := |\mathcal{M}_t|$. We will bound $\langle w_{\star}, \hat{w}_{t+1} \rangle$ from above and below to deduce a bound on M_t , the number of mistakes made by Online Perceptron through the first t rounds. First we bound $\langle w_{\star}, \hat{w}_{t+1} \rangle$ from above. By Cauchy-Schwarz,

$$\langle w_{\star}, \hat{w}_{t+1} \rangle \le \|w_{\star}\|_2 \|\hat{w}_{t+1}\|_2$$

Moreover,

$$\|\hat{w}_{t+1}\|_{2}^{2} = \|\hat{w}_{t}\|_{2}^{2} + 2y_{t}\langle\hat{w}_{t}, x_{t}\rangle + y_{t}^{2}\|x_{t}\|_{2}^{2} \le \|\hat{w}_{t}\|_{2}^{2} + L^{2}$$

Since $\hat{w}_1 = 0$, we have

$$\|\hat{w}_{t+1}\|_2^2 \le L^2 M_t,$$

and thus

$$\langle w_\star, \hat{w}_{t+1} \rangle \le \|w_\star\|_2 L \sqrt{M_t}$$

We now bound $\langle w_{\star}, w_{t+1} \rangle$ from below:

$$\begin{split} \langle w_{\star}, \hat{w}_{t+1} \rangle &= \langle w_{\star}, \hat{w}_{t} \rangle + 1 - [1 - y_{t} \langle w_{\star}, x_{t} \rangle] \\ &\geq \langle w_{\star}, \hat{w}_{t} \rangle + 1 - [1 - y_{t} \langle w_{\star}, x_{t} \rangle]_{+} \\ &= \langle w_{\star}, \hat{w}_{t} \rangle + 1 - \ell(\langle w_{\star}, x_{t} \rangle, y_{t}), \end{split}$$

Since $\hat{w}_1 = 0$,

$$\langle w_\star, \hat{w}_{t+1} \rangle \ge M_t - H_t,$$

where

$$H_t := \sum_{t \in \mathcal{M}_t} \ell(\langle w_\star, x_t \rangle, y_t)$$

Combining the upper and lower bounds on $\langle w_{\star}, \hat{w}_{t+1} \rangle$ shows that

$$M_t - H_t \le \langle w_\star, \hat{w}_{t+1} \rangle \le \|w_\star\|_2 L \sqrt{M_t},$$

i.e.,

$$M_t - \|w_\star\|_2 L \sqrt{M_t} - H_t \le 0.$$

This inequality is quadratic in $\sqrt{M_t}$. By solving it¹, we deduce the bound

$$M_t \le \frac{1}{2} \|w_\star\|_2^2 L^2 + \frac{1}{2} \|w_\star\|_2 L \sqrt{\|w_\star\|_2^2 L^2 + 4H_t} + H_t,$$

which can be further loosened to the following (slightly more interpretable) bound:

$$M_t \le \|w_\star\|_2^2 L^2 + \|w_\star\|_2 L \sqrt{H_t} + H_t.$$

The claim follows.

I

 $[\]frac{1}{1}$ The inequality is of the form $x^2 - bx - c \le 0$ for some non-negative *b* and *c*. This implies that $x \le (b + \sqrt{b^2 + 4c})/2$, and hence $x^2 \le (b^2 + 2b\sqrt{b^2 + 4c} + b^2 + 4c)/4$. We can then use the fact that $\sqrt{A + B} \le \sqrt{A} + \sqrt{B}$ for any non-negative *A* and *B* to deduce $x^2 \le b^2 + b\sqrt{c} + c$.