One-against-all

Daniel Hsu (COMS 4771)

Theorem. Let $\hat{\eta}_{1}, \ldots, \hat{\eta}_{K}: \mathcal{X} \rightarrow[0,1]$ be estimates of conditional probability functions $x \mapsto \mathbb{P}(Y=k \mid X=x)$ for $k=1, \ldots, K$, and let

$$
\epsilon:=\mathbb{E}\left[\max _{k=1, \ldots, K}\left|\hat{\eta}_{k}(X)-\mathbb{P}(Y=k \mid X)\right|\right]
$$

Let $\hat{f}: \mathcal{X} \rightarrow\{1, \ldots, K\}$ be the one-against-all classifier based on $\hat{\eta}_{1}, \ldots, \hat{\eta}_{K}$, i.e.,

$$
\hat{f}(x)=\underset{k=1, \ldots, K}{\arg \max } \hat{\eta}_{k}(x), \quad x \in \mathcal{X}
$$

(with ties broken arbitrarily), and let $f^{\star}: \mathcal{X} \rightarrow\{1, \ldots, K\}$ be the Bayes optimal classifier. Then

$$
\mathbb{P}(\hat{f}(X) \neq Y)-\mathbb{P}\left(f^{\star}(X) \neq Y\right) \leq 2 \epsilon
$$

Proof. Fix $x \in \mathcal{X}, y^{\star}:=f^{\star}(x)$, and $\hat{y}:=\hat{f}(x)$. Let $\eta_{k}(x):=\mathbb{P}(Y=k \mid X=x)$ for all $k=1, \ldots, K$. Then

$$
\begin{aligned}
\mathbb{P}(\hat{f}(X) \neq Y \mid X=x)-\mathbb{P}\left(f^{\star}(X) \neq Y \mid X=x\right) & =\sum_{k \neq \hat{y}} \eta_{k}(x)-\sum_{k \neq y^{\star}} \eta_{k}(x) \\
& =\eta_{y^{\star}}(x)-\eta_{\hat{y}}(x) \\
& =\underbrace{\hat{\eta}_{y^{\star}}(x)-\hat{\eta}_{\hat{y}}(x)}_{\leq 0}+\eta_{y^{\star}}(x)-\hat{\eta}_{y^{\star}}(x)+\hat{\eta}_{\hat{y}}(x)-\eta_{\hat{y}}(x) \\
& \leq 2 \max _{k=1, \ldots, K}\left|\hat{\eta}_{k}(x)-\eta_{k}(x)\right|
\end{aligned}
$$

Therefore, taking expectations with respect to X,

$$
\mathbb{P}(\hat{f}(X) \neq Y)-\mathbb{P}\left(f^{\star}(X) \neq Y\right) \leq 2 \cdot \mathbb{E}\left[\max _{k=1, \ldots, K}\left|\hat{\eta}_{k}(X)-\eta_{k}(X)\right|\right]
$$

The bound on the excess risk is tight. To see this, suppose for a given $x \in \mathcal{X}$ (with $y^{\star}=f^{\star}(x)$ and $\left.\hat{y}=\hat{f}(x)\right)$, we have $\hat{\eta}_{y^{\star}}(x)=\hat{\eta}_{\hat{y}}(x)-\delta$, but $\eta_{y^{\star}}(x)=\hat{\eta}_{y^{\star}}(x)+\epsilon$ and $\eta_{\hat{y}}(x)=\hat{\eta}_{\hat{y}}(x)-\epsilon$. Then

$$
\begin{aligned}
\eta_{y^{\star}}(x)-\eta_{\hat{y}}(x) & =\left(\hat{\eta}_{y^{\star}(x)}+\epsilon\right)-\left(\hat{\eta}_{\hat{y}}(x)-\epsilon\right) \\
& =2 \epsilon-\delta
\end{aligned}
$$

which tends to 2ϵ as $\delta \rightarrow 0$.

