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The logistic regression model

Logistic regression is a model for binary classification data with feature vectors in R? and labels in {—1,+1}.
Data (X1,Y1),...,(X,,Y,) are treated as iid random variables taking values in R? x {—1,+1}, and for each
x € RY,

Y; | X; =z ~ Bern(o(x"w))

where o(t) = 1/(1 + exp(—t)) is the sigmoid function. Here, w € R? is the parameter of the model, and it is
not involved in the marginal distribution of X; (which we leave unspecified).

Maximum likelihood

The log-likelihood of w given (z1,v1), ..., (Tn,yn) € R x {—1,+1} is

- Z In(1 4 exp(—y;xz]w)) + (terms that do not involve w).
i=1

There is no closed-form expression for the maximizer of the log-likelihood. Nevertheless, we can approximately
minimize the negative log-likelihood with gradient descent.

Empirical risk minimization

Maximum likelihood is very different from finding the linear classifier of smallest empirical zero-one loss risk.
Finding the empirical zero-one loss risk minimizer is computationally intractable in general.

Finding a linear separator
There are special cases when finding the empirical zero-one loss risk minimizer is computationally tractable.
One is when the training data is linearly separable: i.e., when there exists w* € R? such that

yiziw* >0, forali=1,...,n.
Claim. Define L(w) = Y7 In(1 + exp(—y;xlw)). Suppose (z1,v1),--., (Tn,yn) € R? x {1, +1} is
linearly separable. Then any w € R? with

L(w) < igﬂgd L(w) + 1n(2)

is a linear separator.

Proof. We first observe that the infimum? (i.e., greatest lower bound) of L is zero. Let w* € R? be a linear
separator, so s; 1= y;xz;w* >0 for alli =1,...,n. For any r > 0,

L(rw*) = Zln(l + exp(—rs;)),
i=1
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and therefore N

rlggo Z In(1 + exp(—rs;)) = 0.

i=1

Every term In(1 + exp(—y;xjw)) in L(w) is positive, so L(w) > 0. Therefore, we conclude that

inf L(w)=0.

weR4

So now we just have to show that any @ € R? with
L(w) < In(2)
is a linear separator. So let @ satisfy L(w) < In(2), which implies
In(1 + exp(—y;z]w)) < In(2)
for every ¢ = 1,...,n. Exponentiating both sides gives
1+ exp(—y;x]w) < 2.

Now subtracting 1 from both sides and taking logarithms gives

This means that @ correctly classifies (x;,y;). Since this holds for all ¢ = 1,...,n, it follows that  is a
linear separator. [
Surrogate loss

Even if (z1,1),.--,(®n,yn) € R? x {—1,+1} is not linearly separable, approximately maximizing the

log-likelihood can yield a good linear classifier. This is because maximizing L is the same as minimizing the
empirical logistic loss risk:

~ 1 <&
R = - go i i
(w) = 5 3 fos (a0
where
fog(2) = —Ino(2)
is the logistic loss. The logistic loss (up to scaling) turns out to be an upper-bound on the zero-one loss:

1

< -
lyo(2) < n2 elog(Z),

where £,,(2) = 1.<oy. If the empirical logistic loss risk is small, then the empirical zero-one loss is also small.

Gradient descent for logistic regression

The derivative of fi,4 is given by

dhog(z) 1 do(2)
dz  o(z) dz
1




Therefore, by linearity and the chain rule, the negative gradient of R with respect to w is

~ 1 <&
—VR(w) = - Z V liog (Y] w)
i=1
_ 1~ dhg(?) V(g2
N n; dz V (yiziw)

—app T
=y z, w

- > o(—yiwiw) - yixi.

1 n
i=1

7

Now suppose A = [xy] - |z,]" € R"*? and b = [yy] - - - |yn]” € R™. (Notice that we have omitted the 1//n
scaling that we had for least squares linear regression.) Then the negative gradient of R can be written as

—VR(w) = %AT(b ©o(=bo (Aw))),

where u ©® v € R” is the coordinate-wise product of vectors u € R" and v € R", and o(v) € R™ is the
coordinate-wise application of the sigmoid function to v € R™.

Gradient descent for logistic regression begins with an initial weight vector w(®) € R%, and then iteratively
updates it by subtracting a positive multiple n > 0 of the gradient at the current iterate:

w® = w D — yYR(w).
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