
Logistic regression

Daniel Hsu (COMS 4771)

The logistic regression model
Logistic regression is a model for binary classification data with feature vectors in Rd and labels in {−1,+1}.
Data (X1, Y1), . . . , (Xn, Yn) are treated as iid random variables taking values in Rd×{−1,+1}, and for each
x ∈ Rd,

Yi |Xi = x ∼ Bern(σ(xTw))
where σ(t) = 1/(1 + exp(−t)) is the sigmoid function. Here, w ∈ Rd is the parameter of the model, and it is
not involved in the marginal distribution of Xi (which we leave unspecified).

Maximum likelihood
The log-likelihood of w given (x1, y1), . . . , (xn, yn) ∈ Rd × {−1,+1} is

−
n∑

i=1
ln(1 + exp(−yix

T
i w)) + (terms that do not involve w).

There is no closed-form expression for the maximizer of the log-likelihood. Nevertheless, we can approximately
minimize the negative log-likelihood with gradient descent.

Empirical risk minimization
Maximum likelihood is very different from finding the linear classifier of smallest empirical zero-one loss risk.
Finding the empirical zero-one loss risk minimizer is computationally intractable in general.

Finding a linear separator
There are special cases when finding the empirical zero-one loss risk minimizer is computationally tractable.
One is when the training data is linearly separable: i.e., when there exists w? ∈ Rd such that

yix
T
i w? > 0, for all i = 1, . . . , n.

Claim. Define L(w) :=
∑n

i=1 ln(1 + exp(−yix
T
i w)). Suppose (x1, y1), . . . , (xn, yn) ∈ Rd × {−1,+1} is

linearly separable. Then any ŵ ∈ Rd with

L(ŵ) < inf
w∈Rd

L(w) + ln(2)

is a linear separator.

Proof. We first observe that the infimum1 (i.e., greatest lower bound) of L is zero. Let w? ∈ Rd be a linear
separator, so si := yix

T
i w? > 0 for all i = 1, . . . , n. For any r > 0,

L(rw?) =
n∑

i=1
ln(1 + exp(−rsi)),

1https://en.wikipedia.org/wiki/Infimum_and_supremum
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and therefore

lim
r→∞

n∑
i=1

ln(1 + exp(−rsi)) = 0.

Every term ln(1 + exp(−yix
T
i w)) in L(w) is positive, so L(w) > 0. Therefore, we conclude that

inf
w∈Rd

L(w) = 0.

So now we just have to show that any ŵ ∈ Rd with

L(ŵ) < ln(2)

is a linear separator. So let ŵ satisfy L(ŵ) < ln(2), which implies

ln(1 + exp(−yix
T
i ŵ)) < ln(2)

for every i = 1, . . . , n. Exponentiating both sides gives

1 + exp(−yix
T
i ŵ) < 2.

Now subtracting 1 from both sides and taking logarithms gives

−yix
T
i ŵ < 0.

This means that ŵ correctly classifies (xi, yi). Since this holds for all i = 1, . . . , n, it follows that ŵ is a
linear separator.

Surrogate loss
Even if (x1, y1), . . . , (xn, yn) ∈ Rd × {−1,+1} is not linearly separable, approximately maximizing the
log-likelihood can yield a good linear classifier. This is because maximizing L is the same as minimizing the
empirical logistic loss risk:

R̂(w) := 1
n

n∑
i=1

`log(yix
T
i w)

where
`log(z) := − ln σ(z)

is the logistic loss. The logistic loss (up to scaling) turns out to be an upper-bound on the zero-one loss:

`zo(z) ≤ 1
ln 2 `log(z),

where `zo(z) = 1{z≤0}. If the empirical logistic loss risk is small, then the empirical zero-one loss is also small.

Gradient descent for logistic regression
The derivative of `log is given by

d`log(z)
dz = − 1

σ(z) ·
dσ(z)

dz

= − 1
σ(z) · σ(z) · σ(−z)

= −σ(−z).
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Therefore, by linearity and the chain rule, the negative gradient of R̂ with respect to w is

−∇R̂(w) = − 1
n

n∑
i=1
∇ `log(yix

T
i w)

= − 1
n

n∑
i=1

d`log(z)
dz

∣∣∣∣∣
z=yixT

i
w

· ∇
(
yix

T
i w
)

= 1
n

n∑
i=1

σ(−yix
T
i w) · yixi.

Now suppose A = [x1| · · · |xn]T ∈ Rn×d and b = [y1| · · · |yn]T ∈ Rn. (Notice that we have omitted the 1/
√
n

scaling that we had for least squares linear regression.) Then the negative gradient of R̂ can be written as

−∇R̂(w) = 1
n

AT(b� σ(−b� (Aw))),

where u � v ∈ Rn is the coordinate-wise product of vectors u ∈ Rn and v ∈ Rn, and σ(v) ∈ Rn is the
coordinate-wise application of the sigmoid function to v ∈ Rn.

Gradient descent for logistic regression begins with an initial weight vector w(0) ∈ Rd, and then iteratively
updates it by subtracting a positive multiple η > 0 of the gradient at the current iterate:

w(t) := w(t−1) − η∇R̂(w(t−1)).
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