Logistic regression

Daniel Hsu (COMS 4771)

The logistic regression model

Logistic regression is a model for binary classification data with feature vectors in \mathbb{R}^{d} and labels in $\{-1,+1\}$. Data $\left(\boldsymbol{X}_{1}, Y_{1}\right), \ldots,\left(\boldsymbol{X}_{n}, Y_{n}\right)$ are treated as iid random variables taking values in $\mathbb{R}^{d} \times\{-1,+1\}$, and for each $\boldsymbol{x} \in \mathbb{R}^{d}$,

$$
Y_{i} \mid \boldsymbol{X}_{i}=\boldsymbol{x} \sim \operatorname{Bern}\left(\sigma\left(\boldsymbol{x}^{\top} \boldsymbol{w}\right)\right)
$$

where $\sigma(t)=1 /(1+\exp (-t))$ is the sigmoid function. Here, $\boldsymbol{w} \in \mathbb{R}^{d}$ is the parameter of the model, and it is not involved in the marginal distribution of \boldsymbol{X}_{i} (which we leave unspecified).

Maximum likelihood

The log-likelihood of \boldsymbol{w} given $\left(\boldsymbol{x}_{1}, y_{1}\right), \ldots,\left(\boldsymbol{x}_{n}, y_{n}\right) \in \mathbb{R}^{d} \times\{-1,+1\}$ is

$$
-\sum_{i=1}^{n} \ln \left(1+\exp \left(-y_{i} \boldsymbol{x}_{i}^{\top} \boldsymbol{w}\right)\right)+(\text { terms that do not involve } \boldsymbol{w}) .
$$

There is no closed-form expression for the maximizer of the log-likelihood. Nevertheless, we can approximately minimize the negative log-likelihood with gradient descent.

Empirical risk minimization

Maximum likelihood is very different from finding the linear classifier of smallest empirical zero-one loss risk. Finding the empirical zero-one loss risk minimizer is computationally intractable in general.

Finding a linear separator

There are special cases when finding the empirical zero-one loss risk minimizer is computationally tractable. One is when the training data is linearly separable: i.e., when there exists $\boldsymbol{w}^{\star} \in \mathbb{R}^{d}$ such that

$$
y_{i} \boldsymbol{x}_{i}^{\top} \boldsymbol{w}^{\star}>0, \quad \text { for all } i=1, \ldots, n
$$

Claim. Define $L(\boldsymbol{w}):=\sum_{i=1}^{n} \ln \left(1+\exp \left(-y_{i} \boldsymbol{x}_{i}^{\top} \boldsymbol{w}\right)\right)$. Suppose $\left(\boldsymbol{x}_{1}, y_{1}\right), \ldots,\left(\boldsymbol{x}_{n}, y_{n}\right) \in \mathbb{R}^{d} \times\{-1,+1\}$ is linearly separable. Then any $\hat{\boldsymbol{w}} \in \mathbb{R}^{d}$ with

$$
L(\hat{\boldsymbol{w}})<\inf _{\boldsymbol{w} \in \mathbb{R}^{d}} L(\boldsymbol{w})+\ln (2)
$$

is a linear separator.
Proof. We first observe that the infimum ${ }^{1}$ (i.e., greatest lower bound) of L is zero. Let $\boldsymbol{w}^{\star} \in \mathbb{R}^{d}$ be a linear separator, so $s_{i}:=y_{i} \boldsymbol{x}_{i}^{\top} \boldsymbol{w}^{\star}>0$ for all $i=1, \ldots, n$. For any $r>0$,

$$
L\left(r \boldsymbol{w}^{\star}\right)=\sum_{i=1}^{n} \ln \left(1+\exp \left(-r s_{i}\right)\right)
$$

[^0]and therefore
$$
\lim _{r \rightarrow \infty} \sum_{i=1}^{n} \ln \left(1+\exp \left(-r s_{i}\right)\right)=0
$$

Every term $\ln \left(1+\exp \left(-y_{i} \boldsymbol{x}_{i}^{\top} \boldsymbol{w}\right)\right)$ in $L(\boldsymbol{w})$ is positive, so $L(\boldsymbol{w})>0$. Therefore, we conclude that

$$
\inf _{\boldsymbol{w} \in \mathbb{R}^{d}} L(\boldsymbol{w})=0
$$

So now we just have to show that any $\hat{\boldsymbol{w}} \in \mathbb{R}^{d}$ with

$$
L(\widehat{\boldsymbol{w}})<\ln (2)
$$

is a linear separator. So let $\hat{\boldsymbol{w}}$ satisfy $L(\hat{\boldsymbol{w}})<\ln (2)$, which implies

$$
\ln \left(1+\exp \left(-y_{i} \boldsymbol{x}_{i}^{\top} \hat{\boldsymbol{w}}\right)\right)<\ln (2)
$$

for every $i=1, \ldots, n$. Exponentiating both sides gives

$$
1+\exp \left(-y_{i} \boldsymbol{x}_{i}^{\top} \hat{\boldsymbol{w}}\right)<2
$$

Now subtracting 1 from both sides and taking logarithms gives

$$
-y_{i} \boldsymbol{x}_{i}^{\top} \hat{\boldsymbol{w}}<0
$$

This means that $\hat{\boldsymbol{w}}$ correctly classifies $\left(\boldsymbol{x}_{i}, y_{i}\right)$. Since this holds for all $i=1, \ldots, n$, it follows that $\hat{\boldsymbol{w}}$ is a linear separator.

Surrogate loss

Even if $\left(\boldsymbol{x}_{1}, y_{1}\right), \ldots,\left(\boldsymbol{x}_{n}, y_{n}\right) \in \mathbb{R}^{d} \times\{-1,+1\}$ is not linearly separable, approximately maximizing the log-likelihood can yield a good linear classifier. This is because maximizing L is the same as minimizing the empirical logistic loss risk:

$$
\widehat{\mathcal{R}}(\boldsymbol{w}):=\frac{1}{n} \sum_{i=1}^{n} \ell_{\log }\left(y_{i} \boldsymbol{x}_{i}^{\top} \boldsymbol{w}\right)
$$

where

$$
\ell_{\log }(z):=-\ln \sigma(z)
$$

is the logistic loss. The logistic loss (up to scaling) turns out to be an upper-bound on the zero-one loss:

$$
\ell_{\mathrm{zo}}(z) \leq \frac{1}{\ln 2} \ell_{\log }(z)
$$

where $\ell_{\mathrm{zo}}(z)=\mathbb{1}_{\{z \leq 0\}}$. If the empirical logistic loss risk is small, then the empirical zero-one loss is also small.

Gradient descent for logistic regression

The derivative of $\ell_{\log }$ is given by

$$
\begin{aligned}
\frac{\mathrm{d} \ell_{\log }(z)}{\mathrm{d} z} & =-\frac{1}{\sigma(z)} \cdot \frac{\mathrm{d} \sigma(z)}{\mathrm{d} z} \\
& =-\frac{1}{\sigma(z)} \cdot \sigma(z) \cdot \sigma(-z) \\
& =-\sigma(-z)
\end{aligned}
$$

Therefore, by linearity and the chain rule, the negative gradient of $\widehat{\mathcal{R}}$ with respect to \boldsymbol{w} is

$$
\begin{aligned}
-\nabla \widehat{\mathcal{R}}(\boldsymbol{w}) & =-\frac{1}{n} \sum_{i=1}^{n} \nabla \ell_{\log }\left(y_{i} \boldsymbol{x}_{i}^{\top} \boldsymbol{w}\right) \\
& =-\left.\frac{1}{n} \sum_{i=1}^{n} \frac{\mathrm{~d} \ell_{\log }(z)}{\mathrm{d} z}\right|_{z=y_{i} \boldsymbol{x}_{i}^{\top} \boldsymbol{w}} \cdot \nabla\left(y_{i} \boldsymbol{x}_{i}^{\top} \boldsymbol{w}\right) \\
& =\frac{1}{n} \sum_{i=1}^{n} \sigma\left(-y_{i} \boldsymbol{x}_{i}^{\top} \boldsymbol{w}\right) \cdot y_{i} \boldsymbol{x}_{i} .
\end{aligned}
$$

Now suppose $\boldsymbol{A}=\left[\boldsymbol{x}_{1}|\cdots| \boldsymbol{x}_{n}\right]^{\top} \in \mathbb{R}^{n \times d}$ and $\boldsymbol{b}=\left[y_{1}|\cdots| y_{n}\right]^{\top} \in \mathbb{R}^{n}$. (Notice that we have omitted the $1 / \sqrt{n}$ scaling that we had for least squares linear regression.) Then the negative gradient of $\widehat{\mathcal{R}}$ can be written as

$$
-\nabla \widehat{\mathcal{R}}(\boldsymbol{w})=\frac{1}{n} \boldsymbol{A}^{\top}(\boldsymbol{b} \odot \sigma(-\boldsymbol{b} \odot(\boldsymbol{A} \boldsymbol{w})))
$$

where $\boldsymbol{u} \odot \boldsymbol{v} \in \mathbb{R}^{n}$ is the coordinate-wise product of vectors $\boldsymbol{u} \in \mathbb{R}^{n}$ and $\boldsymbol{v} \in \mathbb{R}^{n}$, and $\sigma(\boldsymbol{v}) \in \mathbb{R}^{n}$ is the coordinate-wise application of the sigmoid function to $\boldsymbol{v} \in \mathbb{R}^{n}$.

Gradient descent for logistic regression begins with an initial weight vector $\boldsymbol{w}^{(0)} \in \mathbb{R}^{d}$, and then iteratively updates it by subtracting a positive multiple $\eta>0$ of the gradient at the current iterate:

$$
\boldsymbol{w}^{(t)}:=\boldsymbol{w}^{(t-1)}-\eta \nabla \widehat{\mathcal{R}}\left(\boldsymbol{w}^{(t-1)}\right)
$$

[^0]: ${ }^{1}$ https://en.wikipedia.org/wiki/Infimum_and_supremum

