Linear regression

Daniel Hsu (COMS 4771)

Maximum likelihood estimation

One of the simplest linear regression models is the following: $\left(\boldsymbol{X}_{1}, Y_{1}\right), \ldots,\left(\boldsymbol{X}_{n}, Y_{n}\right),(\boldsymbol{X}, Y)$ are iid random pairs taking values in $\mathbb{R}^{d} \times \mathbb{R}$, and

$$
Y \mid \boldsymbol{X}=\boldsymbol{x} \sim \mathrm{N}\left(\boldsymbol{x}^{\top} \boldsymbol{w}, \sigma^{2}\right), \quad \boldsymbol{x} \in \mathbb{R}^{d}
$$

Here, the vector $\boldsymbol{w} \in \mathbb{R}^{d}$ and scalar $\sigma^{2}>0$ are the parameters of the model. (The marginal distribution of \boldsymbol{X} is unspecified.)

The log-likelihood of $\left(\boldsymbol{w}, \sigma^{2}\right)$ given $\left(\boldsymbol{X}_{i}, Y_{i}\right)=\left(\boldsymbol{x}_{i}, y_{i}\right)$ for $i=1, \ldots, n$ is

$$
\sum_{i=1}^{n}\left\{\ln \frac{1}{\sqrt{2 \pi \sigma^{2}}}-\frac{\left(y_{i}-\boldsymbol{x}_{i}^{\top} \boldsymbol{w}\right)^{2}}{2 \sigma^{2}}\right\}+T
$$

where T is some quantity that does not depend on $\left(\boldsymbol{w}, \sigma^{2}\right)$. Therefore, maximizing the log-likelihood over $\boldsymbol{w} \in \mathbb{R}^{d}$ (for any $\sigma^{2}>0$) is the same as minimizing

$$
\frac{1}{n} \sum_{i=1}^{n}\left(\boldsymbol{x}_{i}^{\top} \boldsymbol{w}-y_{i}\right)^{2}
$$

So, the maximum likelihood estimator ($M L E$) of \boldsymbol{w} in this model is

$$
\hat{\boldsymbol{w}} \in \underset{\boldsymbol{w} \in \mathbb{R}^{d}}{\arg \min } \frac{1}{n} \sum_{i=1}^{n}\left(\boldsymbol{x}_{i}^{\boldsymbol{\top}} \boldsymbol{w}-y_{i}\right)^{2}
$$

(It is not necessarily uniquely determined.)

Empirical risk minimization

Let P_{n} be the empirical distribution on $\left(\boldsymbol{x}_{1}, y_{1}\right), \ldots,\left(\boldsymbol{x}_{n}, y_{n}\right) \in \mathbb{R}^{d} \times \mathbb{R}$, i.e., the probability distribution over $\mathbb{R}^{d} \times \mathbb{R}$ with probability mass function p_{n} given by

$$
p_{n}((\boldsymbol{x}, y))=\frac{1}{n} \sum_{i=1}^{n} \mathbb{1}_{\left\{(\boldsymbol{x}, y)=\left(\boldsymbol{x}_{i}, y_{i}\right)\right\}}, \quad(\boldsymbol{x}, y) \in \mathbb{R}^{d} \times \mathbb{R}
$$

The distribution assigns probability mass $1 / n$ to each $\left(\boldsymbol{x}_{i}, y_{i}\right)$ for $i=1, \ldots, n$; no mass is assigned anywhere else. Now consider $(\tilde{\boldsymbol{X}}, \tilde{Y}) \sim P_{n}$. The expected squared loss of the linear function $\boldsymbol{w} \in \mathbb{R}^{d}$ on $(\tilde{\boldsymbol{X}}, \tilde{Y})$ is

$$
\widehat{\mathcal{R}}(\boldsymbol{w}):=\mathbb{E}\left[\left(\tilde{\boldsymbol{X}}^{\top} \boldsymbol{w}-\tilde{Y}\right)^{2}\right]=\frac{1}{n} \sum_{i=1}^{n}\left(\boldsymbol{x}_{i}^{\top} \boldsymbol{w}-y_{i}\right)^{2}
$$

we call this the empirical risk of \boldsymbol{w} on the data $\left(\boldsymbol{x}_{1}, y_{1}\right), \ldots,\left(\boldsymbol{x}_{n}, y_{n}\right)$.

Empirical risk minimization is the method of choosing a function (from some class of functions) based on data by choosing a minimizer of the empirical risk on the data. In the case of linear functions, the empirical risk minimizer (ERM) is

$$
\hat{\boldsymbol{w}} \in \underset{\boldsymbol{w} \in \mathbb{R}^{d}}{\arg \min } \widehat{\mathcal{R}}(\boldsymbol{w})=\underset{\boldsymbol{w} \in \mathbb{R}^{d}}{\arg \min } \frac{1}{n} \sum_{i=1}^{n}\left(\boldsymbol{x}_{i}^{\top} \boldsymbol{w}-y_{i}\right)^{2} .
$$

This is the same as the MLE from above. (It is not necessarily uniquely determined.)

Normal equations

Let

$$
\boldsymbol{A}:=\frac{1}{\sqrt{n}}\left[\begin{array}{ccc}
\leftarrow & \boldsymbol{x}_{1}^{\top} & \rightarrow \\
& \vdots & \\
\leftarrow & \boldsymbol{x}_{n}^{\top} & \rightarrow
\end{array}\right], \quad \boldsymbol{b}:=\frac{1}{\sqrt{n}}\left[\begin{array}{c}
y_{1} \\
\vdots \\
y_{n}
\end{array}\right]
$$

We can write the empirical risk as

$$
\widehat{\mathcal{R}}(\boldsymbol{w})=\|\boldsymbol{A} \boldsymbol{w}-\boldsymbol{b}\|_{2}^{2}, \quad \boldsymbol{w} \in \mathbb{R}^{d}
$$

The gradient of $\widehat{\mathcal{R}}$ is given by

$$
\nabla \widehat{\mathcal{R}}(\boldsymbol{w})=\nabla\left\{(\boldsymbol{A} \boldsymbol{w}-\boldsymbol{b})^{\top}(\boldsymbol{A} \boldsymbol{w}-\boldsymbol{b})\right\}=2 \boldsymbol{A}^{\top}(\boldsymbol{A} \boldsymbol{w}-\boldsymbol{b}), \quad \boldsymbol{w} \in \mathbb{R}^{d}
$$

it is equal to zero for $\boldsymbol{w} \in \mathbb{R}^{d}$ satisfying

$$
\boldsymbol{A}^{\top} \boldsymbol{A} \boldsymbol{w}=\boldsymbol{A}^{\top} \boldsymbol{b}
$$

These linear equations in \boldsymbol{w}, which define the critical points of $\widehat{\mathcal{R}}$, are collectively called the normal equations.
It turns out the normal equations in fact determine the minimizers of $\widehat{\mathcal{R}}$. To see this, let $\hat{\boldsymbol{w}}$ be any solution to the normal equations. Now consider any other $\boldsymbol{w} \in \mathbb{R}^{d}$. We write the empirical risk of \boldsymbol{w} as follows:

$$
\begin{aligned}
\widehat{\mathcal{R}}(\boldsymbol{w}) & =\|\boldsymbol{A} \boldsymbol{w}-\boldsymbol{b}\|_{2}^{2} \\
& =\|\boldsymbol{A}(\boldsymbol{w}-\hat{\boldsymbol{w}})+\boldsymbol{A} \hat{\boldsymbol{w}}-\boldsymbol{b}\|_{2}^{2} \\
& =\|\boldsymbol{A}(\boldsymbol{w}-\hat{\boldsymbol{w}})\|_{2}^{2}+2(\boldsymbol{A}(\boldsymbol{w}-\hat{\boldsymbol{w}}))^{\top}(\boldsymbol{A} \hat{\boldsymbol{w}}-\boldsymbol{b})+\|\boldsymbol{A} \hat{\boldsymbol{w}}-\boldsymbol{b}\|_{2}^{2} \\
& =\|\boldsymbol{A}(\boldsymbol{w}-\hat{\boldsymbol{w}})\|_{2}^{2}+2(\boldsymbol{w}-\hat{\boldsymbol{w}})^{\top}\left(\boldsymbol{A}^{\top} \boldsymbol{A} \hat{\boldsymbol{w}}-\boldsymbol{A}^{\top} \boldsymbol{b}\right)+\|\boldsymbol{A} \hat{\boldsymbol{w}}-\boldsymbol{b}\|_{2}^{2} \\
& =\|\boldsymbol{A}(\boldsymbol{w}-\hat{\boldsymbol{w}})\|_{2}^{2}+\|\boldsymbol{A} \hat{\boldsymbol{w}}-\boldsymbol{b}\|_{2}^{2} \\
& \geq \widehat{\mathcal{R}}(\hat{\boldsymbol{w}}) .
\end{aligned}
$$

The second-to-last step above uses the fact that $\hat{\boldsymbol{w}}$ is a solution to the normal equations. Therefore, we conclude that $\widehat{\mathcal{R}}(\boldsymbol{w}) \geq \widehat{\mathcal{R}}(\hat{\boldsymbol{w}})$ for all $\boldsymbol{w} \in \mathbb{R}^{d}$ and all solutions $\hat{\boldsymbol{w}}$ to the normal equations. So the solutions to the normal equations are the minimizers of $\widehat{\mathcal{R}}$.

Statistical interpretation

Suppose $\left(\boldsymbol{X}_{1}, Y_{1}\right), \ldots,\left(\boldsymbol{X}_{n}, Y_{n}\right),(\boldsymbol{X}, Y)$ are iid random pairs taking values in $\mathbb{R}^{d} \times \mathbb{R}$. The risk of a linear function $\boldsymbol{w} \in \mathbb{R}^{d}$ is

$$
\mathcal{R}(\boldsymbol{w}):=\mathbb{E}\left[\left(\boldsymbol{X}^{\top} \boldsymbol{w}-Y\right)^{2}\right]
$$

Which linear functions have smallest risk?
The gradient of \mathcal{R} is given by

$$
\nabla \mathcal{R}(\boldsymbol{w})=\mathbb{E}\left[\nabla\left\{\left(\boldsymbol{X}^{\top} \boldsymbol{w}-Y\right)^{2}\right\}\right]=2 \mathbb{E}\left[\boldsymbol{X}\left(\boldsymbol{X}^{\top} \boldsymbol{w}-Y\right)\right], \quad \boldsymbol{w} \in \mathbb{R}^{d}
$$

it is equal to zero for $\boldsymbol{w} \in \mathbb{R}^{d}$ satisfying

$$
\mathbb{E}\left[\boldsymbol{X} \boldsymbol{X}^{\top}\right] \boldsymbol{w}=\mathbb{E}[Y \boldsymbol{X}]
$$

These linear equations in \boldsymbol{w}, which define the critical points of \mathcal{R}, are collectively called the population normal equations.
It turns out the population normal equations in fact determine the minimizers of \mathcal{R}. To see this, let \boldsymbol{w}^{\star} be any solution to the population normal equations. Now consider any other $\boldsymbol{w} \in \mathbb{R}^{d}$. We write the empirical risk of \boldsymbol{w} as follows:

$$
\begin{aligned}
\mathcal{R}(\boldsymbol{w}) & =\mathbb{E}\left[\left(\boldsymbol{X}^{\top} \boldsymbol{w}-Y\right)^{2}\right] \\
& =\mathbb{E}\left[\left(\boldsymbol{X}^{\top}\left(\boldsymbol{w}-\boldsymbol{w}^{\star}\right)+\boldsymbol{X}^{\top} \boldsymbol{w}^{\star}-Y\right)^{2}\right] \\
& =\mathbb{E}\left[\left(\boldsymbol{X}^{\top}\left(\boldsymbol{w}-\boldsymbol{w}^{\star}\right)\right)^{2}+2\left(\boldsymbol{X}^{\top}\left(\boldsymbol{w}-\boldsymbol{w}^{\star}\right)\right)\left(\boldsymbol{X}^{\top} \boldsymbol{w}^{\star}-Y\right)+\left(\boldsymbol{X}^{\top} \boldsymbol{w}^{\star}-Y\right)^{2}\right] \\
& =\mathbb{E}\left[\left(\boldsymbol{X}^{\top}\left(\boldsymbol{w}-\boldsymbol{w}^{\star}\right)\right)^{2}\right]+2\left(\boldsymbol{w}-\boldsymbol{w}^{\star}\right)^{\top}\left(\mathbb{E}\left[\boldsymbol{X} \boldsymbol{X}^{\top}\right] \boldsymbol{w}^{\star}-\mathbb{E}[Y \boldsymbol{X}]\right)+\mathbb{E}\left[\left(\boldsymbol{X}^{\top} \boldsymbol{w}^{\star}-Y\right)^{2}\right] \\
& =\mathbb{E}\left[\left(\boldsymbol{X}^{\top}\left(\boldsymbol{w}-\boldsymbol{w}^{\star}\right)\right)^{2}\right]+\mathbb{E}\left[\left(\boldsymbol{X}^{\top} \boldsymbol{w}^{\star}-Y\right)^{2}\right] \\
& \geq \mathcal{R}\left(\boldsymbol{w}^{\star}\right) .
\end{aligned}
$$

The second-to-last step above uses the fact that \boldsymbol{w}^{\star} is a solution to the population normal equations. Therefore, we conclude that $\mathcal{R}(\boldsymbol{w}) \geq \mathcal{R}\left(\boldsymbol{w}^{\star}\right)$ for all $\boldsymbol{w} \in \mathbb{R}^{d}$ and all solutions \boldsymbol{w}^{\star} to the population normal equations. So the solutions to the population normal equations are the minimizers of \mathcal{R}.

The similarity to the previous section is no accident. The normal equations (based on $\left.\left(\boldsymbol{X}_{1}, Y_{1}\right), \ldots,\left(\boldsymbol{X}_{n}, Y_{n}\right)\right)$ are precisely

$$
\mathbb{E}\left[\tilde{\boldsymbol{X}} \tilde{\boldsymbol{X}}^{\top}\right] \boldsymbol{w}=\mathbb{E}[\tilde{Y} \tilde{\boldsymbol{X}}]
$$

for $(\tilde{\boldsymbol{X}}, \tilde{Y}) \sim P_{n}$, where P_{n} is the empirical distribution on $\left(\boldsymbol{X}_{1}, Y_{1}\right), \ldots,\left(\boldsymbol{X}_{n}, Y_{n}\right)$. By the Law of Large Numbers, the left-hand side $\mathbb{E}\left[\tilde{\boldsymbol{X}} \tilde{\boldsymbol{X}}^{\top}\right]$ converges to $\mathbb{E}\left[\boldsymbol{X} \boldsymbol{X}^{\top}\right]$ and the right-hand side $\mathbb{E}[\tilde{Y} \tilde{\boldsymbol{X}}]$ converges to $\mathbb{E}[Y \boldsymbol{X}]$ as $n \rightarrow \infty$. In other words, the normal equations converge to the population normal equations as $n \rightarrow \infty$. Thus, ERM can be regarded as a plug-in estimator for \boldsymbol{w}^{\star}.

Using classical arguments from asymptotic statistics, one can prove that the distribution of $\sqrt{n}\left(\hat{\boldsymbol{w}}-\boldsymbol{w}^{\star}\right)$ converges (as $n \rightarrow \infty$) to a multivariate normal with mean zero and covariance $\mathbb{E}\left[\boldsymbol{X} \boldsymbol{X}^{\top}\right]^{-1} \operatorname{cov}(\varepsilon \boldsymbol{X}) \mathbb{E}\left[\boldsymbol{X} \boldsymbol{X}^{\top}\right]^{-1}$, where $\varepsilon:=Y-\boldsymbol{X}^{\top} \boldsymbol{w}^{\star}$. (This assumes, along with some standard moment conditions, that $\mathbb{E}\left[\boldsymbol{X} \boldsymbol{X}^{\top}\right]$ is invertible so that \boldsymbol{w}^{\star} is uniquely defined. But it does not require the conditional distribution of $Y \mid \boldsymbol{X}$ to be normal.)

Geometric interpretation

Let $\boldsymbol{a}_{j} \in \mathbb{R}^{n}$ be the vector in the j-th column of \boldsymbol{A}, so

$$
\boldsymbol{A}=\left[\begin{array}{ccc}
\uparrow & & \uparrow \\
\boldsymbol{a}_{1} & \cdots & \boldsymbol{a}_{d} \\
\downarrow & & \downarrow
\end{array}\right]
$$

Since range $(\boldsymbol{A})=\left\{\boldsymbol{A} \boldsymbol{w}: \boldsymbol{w} \in \mathbb{R}^{d}\right\}$, minimizing $\|\boldsymbol{A} \boldsymbol{w}-\boldsymbol{b}\|_{2}^{2}$ is the same as finding the vector $\hat{\boldsymbol{b}} \in \operatorname{range}(\boldsymbol{A})$ closest to \boldsymbol{b} (in Euclidean distance), and then specifying the linear combination of $\boldsymbol{a}_{1}, \ldots, \boldsymbol{a}_{d}$ that is equal to $\hat{\boldsymbol{b}}$, i.e., specifying $\hat{\boldsymbol{w}}=\left(\hat{w}_{1}, \ldots, \hat{w}_{d}\right)$ such that $\hat{w}_{1} \boldsymbol{a}_{1}+\cdots+\hat{w}_{d} \boldsymbol{a}_{d}=\hat{\boldsymbol{b}}$. The solution $\hat{\boldsymbol{b}}$ is the orthogonal projection of \boldsymbol{b} to range (\boldsymbol{A}). This vector $\hat{\boldsymbol{b}}$ is uniquely determined; however, the coefficients $\hat{\boldsymbol{w}}$ are uniquely determined if and only if $\boldsymbol{a}_{1}, \ldots, \boldsymbol{a}_{d}$ are linearly independent. The vectors $\boldsymbol{a}_{1}, \ldots, \boldsymbol{a}_{d}$ are linearly independent exactly when the rank of \boldsymbol{A} is equal to d.
We conclude that the empirical risk has a unique minimizer exactly when \boldsymbol{A} has rank d.

