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The algorithm
The input training data is {(z;, y;)}7 from X x {—1,+1}.
o Initialize Dy (i) := 1/n for each i =1,...,n.
e Fort=1,...,T, do:
— Give D;-weighted examples to Weak Learner; get back hy: X — {—1,+1}.
— Compute weight on h; and update weights on examples:
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is the normalizer that makes Dy a probability distribution.

« Final hypothesis is & defined by h(z) := sign (Zthl ay - hy (x)) for z € X.

Training error rate bound

Let 7 be the function defined by
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so h(z) = sign(#(x)). The training error rate of i can be bounded above by the average exponential loss of /:
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This holds because
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h(x:) # yi & —yil(z;) > 0 & exp(—yil(z;)) > 1.



Furthermore, the average exponential loss of 1 equals the product of the normalizers from all rounds:
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Since each y;h:(x;) € {—1,+1}, the normalizer Z; can be written as
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So, we conclude the following bound on the training error rate of h:
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where the last step uses the fact that 1 + x < e® for any real number x.

(The bound is usually written in terms of v; := /2, i.e., as exp(—2 Zle v2).)

Margins on training examples
Let g be the function defined by
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so y;§(x;) is the margin achieved on example (z;,y;). We may assume without loss of generality that c; > 0
for each t = 1,...,T (by replacing h; with —h; as needed.) Fix a value 6 € (0,1), and consider the fraction
of training examples on which § achieves a margin at most 6:
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This quantity can be bounded above using the arguments from before:
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Suppose that for some v > 0, s; > 2y for all t =1,...,T. If § < ~, then using calculus, it can be shown that
each term in the product is less than 1:
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Hence, the bound decreases to zero exponentially fast with T'.
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