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Classification 1V: Ensemble methods



» Bagging and Random Forests
» Boosting
» Margins and over-fitting
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Motivation

» Recall model averaging: given T real-valued predictors
FO L FD) form ensemble predictor fave

favg(@) = ZNK)

T=
> Mean squared error:
| RN
mse( favg) = zme )= 7 2B | (fave(X) = JO(X))?]
t=1

» For classification, analogue is majority-vote classifier fumaj:

Fnaj(z) = {“ if YL, fO(z) >0

1 otherwise

(favg is the scoring function used for fmaj)
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» Starting anew; how should we train classifiers to combine in
majority-vote?
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How to get classifiers to combine?

» Starting anew; how should we train classifiers to combine in
majority-vote?

» Recall: model averaging works well when

> all f®) have similar MSEs, and
» all f® predict very differently from each other
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How to get classifiers to combine?

» Starting anew; how should we train classifiers to combine in
majority-vote?

» Recall: model averaging works well when

> all f®) have similar MSEs, and
» all f® predict very differently from each other

> To first point, use same learning algorithm for all f(t)

» To second point, learning algorithm should have “high
variance”
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Using the same learning algorithm multiple times |

» Running same learning algorithm T" times on the same data set
yields T identical classifiers — not helpful!

» Instead, want to run same learning algorithm on 7' separate
data sets.

Figure 1: What we want is T" data sets drawn from P
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Using the same learning algorithm multiple times Il

» Invoke plug-in principle
» In |ID model, regard empirical disitribution on training examples
P, as estimate of the example distribution P.
» Draw T independent data sets from P,; and run learning
algorithm on each data set.
» This is called bootstrap resampling.

Figure 2: What we can get is T' data sets from P,
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Bagging

» Bagging: bootstrap aggregating (Breiman, 1994)
» Given training data (z1,y1),..., (Tn,yn) € X x {—1,+1}
» Fort=1,...,T:
» Randomly draw n examples with replacement from training
data: S} := ((a:l@,yg”));;l (bootstrap sample)
> Run learning algorithm on S7 to get classifier f(*)

» Return majority-vote classifier over f(l), . ,f(T)
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Aside: Sampling with replacement

» Pick n individuals from a population of size n with
replacement.
» What is the chance that a given individual is not picked?

» Implications for bagging:
» Each bootstrap sample contains about 63% of the training
examples
» Remaining 37% can be used to estimate error rate of classifier
trained on bootstrap sample
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Random forests

» Random Forests (Breiman, 2001): Bagging with randomized
variant of decision tree learning algorithm
» Each time we need to choose a split, pick random subset of v/d
features and only choose split from among those features.

» Main idea: trees may use very different features, so less likely
to make mistakes in the same way.
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Classifiers with independent errors

» Say we have T binary classifiers f(l), ey f(T)
P> Assume on a given x, each provides an incorrect prediction
with probability 0.4:

Pr(fO(X)£Y | X =) =04.

Moreover, assume error events are independent.

» Use majority-vote classifier fmaj.

» What is chance that more than half of the classifiers give the
incorrect prediction?
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Coping with non-independent errors

» Classifier errors are unlikely to be independent; do something
else to benefit from majority-vote
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Coping with non-independent errors

» Classifier errors are unlikely to be independent; do something
else to benefit from majority-vote

» Change how we obtain the individual classifiers:

» Adaptively choose classifiers
» Re-weight training data
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Coping with non-independent errors

» Classifier errors are unlikely to be independent; do something
else to benefit from majority-vote

» Change how we obtain the individual classifiers:

» Adaptively choose classifiers
» Re-weight training data

» Start with uniform distribution over training examples
> Loop:
» Use learning algorithm to get new classifier for ensemble
» Re-weight training examples to emphasize examples on which
new classifier is incorrect
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Adaptive Boosting

» AdaBoost (Freund and Schapire, 1997)
» Training data (1,91),..., (Tn,yn) € X x {—1,+1}
» Initialize D1(i) =1/nforalli=1,...,n
» Fort=1,...,T":
» Run learning algorithm on D;-weighted training examples, get
classifier f(*)
» Update weights:

2= S D)y fO () € [-1,+1]
i=1

1 1 + Zt
= — 1 eR
D S
D, (i —ay -y fO(x;
Dy (i) = @ expl=ar gl V@) ooy,
Zy
Here Z, is normalizer that makes Dy a probability
distribution.

» Final classifier: f(:r) = Sign(Z;‘le ay - fO (z))
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Figure 3: a; as function of z;
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Example: AdaBoost with decision stumps

» (From Figures 1.1 and 2.2 of Schapire & Freund text.)

P> Use “decision stump” learning algorithm with AdaBoost
» Each f® has the form

+1 ifx; >0 -1 ifx; >0
) () — i () () — i

» Straightforward to handle importance weights D, (i) in decision
tree learning algorithm

Figure 4: Training data for example execution
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f(l)
21 =0.40, a3 = 0.42
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f(l)
21 =0.40, a3 = 0.42
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f(l) f(2)
21 =040, a; =0.42 2z, =0.58, ay = 0.65
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f(l) f(2)
21 =040, a1 =0.42 2z, =0.58, ay = 0.65
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F f@ F®
zZ1 = 040, a)p = 0.42 Z9 = 058, Qp = 0.65 zZ3 = 072, a3 = 0.92

19/24



F@ 7@ F®
zZ1 = 0.40, ap = 0.42 Zy = 0.58y Qg = 0.65 zZ3 = 0.72, g = 0.92
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7@ F®
Z1—040 Oé1—042 Z2—058 a2—065 Z3—072 a3—092

Final classifier:
f(a) = sign (0.42f V) (x) + 0.65/) (2) + 0.92fs(x))
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Training error rate of final classifier

» Let 7 := z;/2: advantage over random guessing achieved by

f(t)

» Theorem: Training error rate of final classifier is

err(f, (x4, yi))imq) < exp ( 22%) = exp (—27},2T)

where
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Training error rate of final classifier

» Let 7 := z;/2: advantage over random guessing achieved by

f(t)

» Theorem: Training error rate of final classifier is
err(f7 (($i7 yz)) < exXp -2 Z"}/t = exp (_2f_}/2T)
where

» AdaBoost is “adaptive”:

» Some v; can be small (even negative)—only care about average

,.—)/2
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Training error rate of final classifier

» Let 7 := z;/2: advantage over random guessing achieved by

f(t)

» Theorem: Training error rate of final classifier is

err(f, (w5, y:))1y) < exp | —2 nyt = exp (—27}/2T)

where

» AdaBoost is “adaptive”:
» Some v; can be small (even negative)—only care about average
,.—)/2
» What about true error rate in [ID model?
» A very complex model as T' becomes large!
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Surprising behavior of boosting

» AdaBoost + C4.5 decision tree learning on “letters” data set

20
15 /\ C4.5 test error

AdaBoost test error

\édaBoost training error
10 100 1000

Figure 5: Figure 1.7 from Schapire & Freund text

» Training error rate is zero after five iterations.
P> Test error rate continues to decrease, even up to 1000

iterations.
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Margins theory

» Look at (normalized) scoring function of final classifier

2 o Zthl Qg - f(t) (ac)
o)==

> Say y- ﬁ(x) is margin achieved by h on example (z,y)

€ [-1,+1].
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Margins theory

» Look at (normalized) scoring function of final classifier

2 o Zthl Qg - f(t) (ac)
o)==

> Say y- ﬁ(x) is margin achieved by h on example (z,y)

€ [-1,+1].

» Theorem (Schapire, Freund, Bartlett, and Lee, 1998):
» Larger margins on training examples = better resistance to
over-fitting in 1ID model
» AdaBoost tends to increase margins on training examples

» (Similar to but not same as SVM margins)
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Margins theory

» Look at (normalized) scoring function of final classifier

o S fO()
o)==

> Say y- ﬁ(x) is margin achieved by h on example (z,y)

€ [-1,+1].

» Theorem (Schapire, Freund, Bartlett, and Lee, 1998):
» Larger margins on training examples = better resistance to
over-fitting in 1ID model
» AdaBoost tends to increase margins on training examples

» (Similar to but not same as SVM margins)

» On “letters” data set
T=5|T=100|7T = 1000
training error rate | 0.0% | 0.0% 0.0%
test error rate 84% | 3.3% 3.1%
% margins <0.5 7.7% | 0.0% 0.0%
min margin achieved | 0.14 0.52 0.55
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