Machine learning lecture slides

COMS 4771 Fall 2020

Optimization II: Neural networks

Outline

- Architecture of (layered) feedforward neural networks
- Universal approximation
- Backpropagation
- Practical issues

Parametric featurizations

- So far: data features (x or $\varphi(x)$) are fixed during training
- Consider a (small) collection of feature transformations φ
- Select φ via cross-validation - outside of normal training
- "Deep learning" approach:
- Use φ with many tunable parameters
- Optimize parameters of φ during normal training process
- Neural network: parameterization for function $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$
- $f(x)=\varphi(x)^{\top} w$
- Parameters include both w and parameters of φ
- Varying parameters of φ allows f to be essentially any function!
- Major challenge: optimization

Figure 1: Neural networks as feature maps

Feedforward neural network

- Architecture of a feedforward neural network
- Directed acyclic graph $G=(V, E)$
- One source node (vertex) per input to the function $\left(x_{1}, \ldots, x_{d}\right)$
- One sink node per output of the function
- Internal nodes are called hidden units
- Each edge $(u, v) \in E$ has a weight parameter $w_{u, v} \in \mathbb{R}$
- Value h_{v} of node v given values of parents $\pi_{G}(v)=\{u \in V:(u, v) \in E\}$ is

$$
h_{v}:=\sigma_{v}\left(z_{v}\right), \quad z_{v}:=\sum_{u \in \pi_{G}(v)} w_{u, v} \cdot h_{u} .
$$

- $\sigma_{v}: \mathbb{R} \rightarrow \mathbb{R}$ is the activation function (a.k.a. link function)
- E.g., sigmoid function $\sigma_{v}(z)=1 /\left(1+e^{-z}\right)$
- Inspired by neurons in the brain

Figure 2: Computation DAG of a feedforward neural network

Standard layered architectures

- Standard feedforward architecture arranges nodes into layers
- Initial layer (layer zero): source nodes (input)
- Final layer (layer L): sink nodes (output)
- (Layer counting is confusing; usually don't count input)
- Edges only go from one layer to the next
- (Non-standard feedforward architectures (e.g., ResNets) break this rule)
- Can write function using matrices of weight parameters

$$
f(x)=\sigma_{L}\left(W_{L} \sigma_{L-1}\left(\cdots \sigma_{1}\left(W_{1} x\right) \cdots\right)\right)
$$

- Layer ℓ has d_{ℓ} nodes
- $W_{\ell} \in \mathbb{R}^{d_{\ell} \times d_{\ell-1}}$ are the weight parameters for layer ℓ
- Scalar-valued activation function $\sigma_{\ell}: \mathbb{R} \rightarrow \mathbb{R}$ (e.g., sigmoid) is applied coordinate-wise to input
- Often also include "bias" parameters $b_{\ell} \in \mathbb{R}^{d_{\ell}}$

$$
f(x)=\sigma_{L}\left(b_{L}+W_{L} \sigma_{L-1}\left(\cdots \sigma_{1}\left(b_{1}+W_{1} x\right) \cdots\right)\right)
$$

- The tunable parameters: $\theta=\left(W_{1}, b_{1}, \ldots, W_{L}, b_{L}\right)$

Figure 3: Layered feedforward neural network

Well-known activation functions

- Heaviside: $\sigma(z)=1_{\{z \geq 0\}}$
- Popular in the 1940s; also called step function
- Sigmoid (from logistic regression): $\sigma(z)=1 /\left(1+e^{-z}\right)$
- Popular since 1970s
- Hyperbolic tangent: $\sigma(z)=\tanh (z)$
- Similar to sigmoid, but range is $(-1,1)$ rather than $(0,1)$
- Rectified Linear Unit (ReLU): $\sigma(z)=\max \{0, z\}$
- Popular since 2012
- Identity: $\sigma(z)=z$
- Popular with luddites

Power of non-linear activations

- What happens if every activation function is linear/affine?
- Overall function is affine
- An unusual way to parameterize an affine function
- Therefore, use non-linear/non-affine activation functions

Necessity of multiple layers (1)

- Suppose only have input and output layers, so function f is

$$
f(x)=\sigma\left(b+w^{\top} x\right)
$$

where $b \in \mathbb{R}$ and $w \in \mathbb{R}^{d}$ (so $w^{\top} \in \mathbb{R}^{1 \times d}$)

- If σ is monotone (e.g., Heaviside, sigmoid, hyperbolic tangent, ReLU, identity), then f has same limitations as a linear/affine classifier

$$
\times
$$

0

Figure 4: XOR data set

Necessity of multiple layers (2)

- XOR problem
- Let $x^{(1)}=(+1,+1), x^{(2)}=(+1,-1), x^{(3)}=(-1,+1)$, $x^{(4)}=(-1,-1)$.
- $y^{(i)}=+1$ iff coordinates of $x^{(i)}$ are the same. (XNOR)
- Suppose $(w, b) \in \mathbb{R}^{2} \times \mathbb{R}$ satisfies

$$
\begin{aligned}
-b-w^{\top} x^{(1)} & <0 \\
b+w^{\top} x^{(2)} & <0 \\
b+w^{\top} x^{(3)} & <0
\end{aligned}
$$

- Add up the equations:

$$
b+w^{\top}\left(x^{(2)}+x^{(3)}-x^{(1)}\right)<0 .
$$

- But $x^{(2)}+x^{(3)}-x^{(1)}=x^{(4)}$, so

$$
b+w^{\top} x^{(4)}<0 .
$$

In other words, cannot correctly label $x^{(4)}$.

Neural network approximation theorems

- Theorem (Cybenko, 1989; Hornik, Stinchcombe, \& White, 1989): Let σ_{1} be any continuous non-linear activation function from above. For any continuous function $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$ and any $\varepsilon>0$, there is a two-layer neural network (with parameters $\left.\theta=\left(W_{1}, b_{1}, w_{2}\right)\right)$ s.t.

$$
\max _{x \in[0,1]^{d}}\left|f(x)-w_{2}^{\top} \sigma_{1}\left(b_{1}+W_{1} x\right)\right|<\varepsilon
$$

- This property of such families of neural networks is called universal approximation.
- Many caveats
- "Width" (number of hidden units) may need to be very large
- Does not tell us how to find the network
- Does not justify deeper networks

Stone-Weierstrass theorem (polynomial version)

Theorem (Weierstrass, 1885): For any continuous function
$f:[a, b] \rightarrow \mathbb{R}$, and any $\epsilon>0$, there exists a polynomial p such that

$$
\sup _{x \in[a, b]}|f(x)-p(x)|<\epsilon .
$$

Stone-Weierstrass theorem (general version)

Theorem (Stone, 1937): Let $K \subset \mathbb{R}^{d}$ be any bounded set. Let A be a set of continuous functions on K such that the following hold.
(1) A is an algebra (i.e., A is closed under addition, multiplication, and scalar multiplication).
(2) A does not vanish on K (i.e., for all $x \in K$, there exists $h \in A$ such that $h(x) \neq 0)$.
(3) A separates points in K (i.e., for all distinct $x, y \in K$, there exists $h \in A$ such that $h(x) \neq h(y))$.

For any continuous function $f: K \rightarrow \mathbb{R}$, and any $\epsilon>0$, there exists $h \in A$ such that

$$
\sup _{x \in K}|f(x)-h(x)|<\epsilon .
$$

Two-layer neural networks with cosine activation functions

Let $K=[0,1]^{d}$, and let

$$
\begin{aligned}
& A=\left\{x \mapsto \sum_{k=1}^{m} a_{k} \cos \left(x^{\top} w_{k}+b_{k}\right):\right. \\
& \\
& \left.\quad m \in \mathbb{N}, a_{k}, b_{k} \in \mathbb{R}, w_{k} \in \mathbb{R}^{d} \text { for } k=1, \ldots, m\right\} .
\end{aligned}
$$

(Check that A satisfies properties of Stone-Weierstrass theorem.)

Two-layer neural networks with exp activation functions

Let $K=[0,1]^{d}$, and let

$$
\begin{aligned}
& A=\left\{x \mapsto \sum_{k=1}^{m} a_{k} \exp \left(x^{\top} w_{k}+b_{k}\right):\right. \\
&\left.m \in \mathbb{N}, a_{k}, b_{k} \in \mathbb{R}, w_{k} \in \mathbb{R}^{d} \text { for } k=1, \ldots, m\right\} .
\end{aligned}
$$

(Check that A satisfies properties of Stone-Weierstrass theorem.)

Fitting neural networks to data

- Training data $\left(x_{1}, y_{1}\right), \ldots,\left(x_{n}, y_{n}\right) \in \mathbb{R}^{d} \times \mathbb{R}$
- Fix architecture: $G=(V, E)$ and activation functions
- ERM: find parameters θ of neural network f_{θ} to minimize empirical risk (possibly with a surrogate loss)
- Regression $y_{i} \in \mathbb{R}$

$$
\widehat{\mathcal{R}}(\theta)=\frac{1}{n} \sum_{i=1}^{n}\left(f_{\theta}\left(x_{i}\right)-y_{i}\right)^{2}
$$

- Binary classification $y_{i} \in\{-1,+1\}$

$$
\widehat{\mathcal{R}}(\theta)=\frac{1}{n} \sum_{i=1}^{n} \ln \left(1+\exp \left(-y_{i} f_{\theta}\left(x_{i}\right)\right)\right)
$$

(Could use other surrogate loss functions ...)

- Can also add regularization terms, but also common to use algorithmic regularization
- Typically objective is not convex in parameters θ
- Nevertheless, local search (e.g., gradient descent, SGD) often works well!

Backpropagation

- Backpropagation (backprop): Algorithm for computing partial derivatives wrt weights in a feedforward neural network
- Clever organization of partial derivative computations with chain rule
- Use in combination with gradient descent, SGD, etc.
- Consider loss on a single example (x, y), written as

$$
J:=\ell\left(y, f_{\theta}(x)\right)
$$

- Goal: compute $\frac{\partial J}{\partial w_{u, v}}$ for every edge $(u, v) \in E$
- Initial step of backprop: forward propagation
- Compute z_{v} 's and h_{v} 's for every node $v \in V$
- Running time: linear in size of network
- We'll see that rest of backprop also just requires time linear in size of network

Derivative of loss with respect to weights

- Let $\hat{y}_{1}, \hat{y}_{2}, \ldots$ denote the values at the output nodes.
- Then by chain rule,

$$
\frac{\partial J}{w_{u, v}}=\sum_{i} \frac{\partial J}{\partial \hat{y}_{i}} \cdot \frac{\partial \hat{y}_{i}}{w_{u, v}} .
$$

- $\frac{\partial J}{\partial \hat{y}_{i}}$ is just determined by the loss function (e.g., squared loss)
- So just have to focus on $\frac{\partial \hat{y}_{i}}{w_{u, v}}$
- Assume for simplicity there is just a single output, \hat{y}

Derivative of output with respect to weights

- Chain rule, again:

$$
\frac{\partial \hat{y}}{\partial w_{u, v}}=\frac{\partial \hat{y}}{\partial h_{v}} \cdot \frac{\partial h_{v}}{\partial w_{u, v}}
$$

- First term: trickier; we'll handle later
- Second term:
- $h_{v}=\sigma_{v}\left(z_{v}\right)$
- $z_{v}=w_{u, v} \cdot h_{u}+\left(\right.$ terms not involving $\left.w_{u, v}\right)$
- Therefore

$$
\frac{\partial h_{v}}{\partial w_{u, v}}=\frac{\partial h_{v}}{\partial z_{v}} \cdot \frac{\partial z_{v}}{\partial w_{u, v}}=\sigma^{\prime}\left(z_{v}\right) \cdot h_{u}
$$

- z_{v} and h_{u} were computed during forward propagation

Figure 5: Derivative of a node's output with respect to an incoming weight

Derivative of output with respect to hidden units

- Key trick: compute $\frac{\partial \hat{y}}{\partial h_{v}}$ for all vertices in decreasing order of layer number
- If v is not the output node, then by chain rule (yet again),

$$
\frac{\partial \hat{y}}{\partial h_{v}}=\sum_{v^{\prime}:\left(v, v^{\prime}\right) \in E} \frac{\partial \hat{y}}{\partial h_{v^{\prime}}} \cdot \frac{\partial h_{v^{\prime}}}{\partial h_{v}}
$$

- $\frac{\partial \hat{y}}{\partial h_{v^{\prime}}}$ was already computed since v^{\prime} is in higher layer than v
- $h_{v^{\prime}}=\sigma_{v^{\prime}}\left(z_{v^{\prime}}\right)$
- $z_{v^{\prime}}=w_{v, v^{\prime}} \cdot h_{v}+\left(\right.$ terms not involving $\left.h_{v}\right)$
- Therefore

$$
\begin{aligned}
\frac{\partial h_{v^{\prime}}}{\partial h_{v}} & =\frac{\partial h_{v^{\prime}}}{\partial z_{v^{\prime}}} \cdot \frac{\partial z_{v^{\prime}}}{\partial h_{v}} \\
& =\sigma^{\prime}\left(z_{v^{\prime}}\right) \cdot w_{v, v^{\prime}} .
\end{aligned}
$$

- z_{v} 's were computed during forward propagation
- $w_{v, v^{\prime}}$'s are the values of the weight parameters at which we want to compute the gradient

Figure 6: Derivative of the network output with respect to hidden unit values

Example: chain graph (1)

- Function $f_{\theta}: \mathbb{R} \rightarrow \mathbb{R}$
- Architecture
- DAG: $0 \longrightarrow 1 \longrightarrow 2 \longrightarrow \cdots \longrightarrow L$
- Same activation σ in every layer
- Parameters $\theta=\left(w_{0,1}, w_{1,2}, \ldots, w_{L-1, L}\right)$
- Input is at vertex 0 , and output is at vertex L
- Fix input value $x \in \mathbb{R}$; what is $\frac{\partial h_{L}}{\partial w_{i-1, i}}$ for $i=1, \ldots, L$?
- Forward propagation:
- $h_{0}:=x$
- For $i=1,2, \ldots, L$:

$$
\begin{aligned}
z_{i} & :=w_{i-1, i} h_{i-1} \\
h_{i} & :=\sigma\left(z_{i}\right)
\end{aligned}
$$

Example: chain graph (2)

- Backprop:
- For $i=L, L-1, \ldots, 1$:

$$
\begin{aligned}
& \frac{\partial h_{L}}{\partial h_{i}}:= \begin{cases}1 & \text { if } i=L \\
\frac{\partial h_{L}}{\partial h_{i+1}} \cdot \sigma^{\prime}\left(z_{i+1}\right) w_{i, i+1} & \text { if } i<L\end{cases} \\
& \frac{\partial h_{L}}{\partial w_{i-1, i}}:=\frac{\partial h_{L}}{\partial h_{i}} \cdot \sigma^{\prime}\left(z_{i}\right) h_{i-1} \\
& \text { input }
\end{aligned}
$$

Figure 7: Neural network with a chain computation graph

Practical issues I: Initialization

- Ensure inputs are standardized: every feature has zero mean and unit variance (wrt training data)
- Even better: different features have zero covariance (again, on training data)
- But this can be expensive
- Initialize weights randomly for gradient descent / SGD
- Standard normal random variables (or similar)
- What should variance be?
- Heuristic: ensure h_{v} have similar statistics as inputs
- E.g., using tanh-activation, if v has in-degree k, use variance $1 / k$ for all weights $w_{u, v}$
- Many initialization schemes for other activations (e.g., ReLU), dealing with bias parameters, ...

Practical issues II: Architecture choice

- Architecture can be regarded as a "hyperparameter"
- Could use cross-validation to select, but ...
- Many "good" architectures are known for popular problems (e.g., image classification)
- Unclear what to do for completely new problems
- Optimization-inspired architecture choice
- With wide enough network, can get zero training error
- Use the smallest network that lets you get zero training error
- Then add regularization term to objective (e.g., sum of squares of weights), and optimize the regularized ERM objective
- Entire research communities are trying to figure out good architectures for their problems

Multi-class

Vector-valued activation: $\sigma: \mathbb{R}^{d_{\ell}} \rightarrow \mathbb{R}^{d_{\ell}}$

- Softmax activation: $\sigma(v)_{i}=\exp \left(v_{i}\right) / \sum_{j} \exp \left(v_{j}\right)$
- Common to use this in final layer

Convolutional nets

- Neural networks with convolutional layers
- Useful when inputs have locality structure
- Sequential structure (e.g., speech waveform)
- 2D grid structure (e.g., image)
- Weight matrix W_{ℓ} is highly-structured
- Determined by a small filter
- Time to compute $W_{\ell} h_{\ell-1}$ is typically $\ll d_{\ell} \times d_{\ell-1}$ (e.g., closer to $\max \left\{d_{\ell}, d_{\ell-1}\right\}$)

Convolutions I

- Convolution of two continuous functions: $h:=f * g$

$$
h(x)=\int_{-\infty}^{+\infty} f(y) g(x-y) \mathrm{d} y
$$

- If $f(x)=0$ for $x \notin[-w,+w]$, then

$$
h(x)=\int_{-w}^{+w} f(y) g(x-y) \mathrm{d} y
$$

- Replaces $g(x)$ with weighted combination of g at nearby points

Convolutions II

- For functions on discrete domain, replace integral with sum

$$
h(i)=\sum_{j=-\infty}^{\infty} f(j) g(i-j)
$$

E.g., suppose only $f(0), f(1), f(2)$ are non-zero. Then:

$$
\left[\begin{array}{l}
h(1) \\
h(2) \\
h(3) \\
h(4) \\
h(5) \\
h(6) \\
h(7)
\end{array}\right]=\left[\begin{array}{ccccc}
f(0) & 0 & 0 & 0 & 0 \\
f(1) & f(0) & 0 & 0 & 0 \\
f(2) & f(1) & f(0) & 0 & 0 \\
0 & f(2) & f(1) & f(0) & 0 \\
0 & 0 & f(2) & f(1) & f(0) \\
0 & 0 & 0 & f(2) & f(1) \\
0 & 0 & 0 & 0 & f(2)
\end{array}\right]\left[\begin{array}{l}
g(1) \\
g(2) \\
g(3) \\
g(4) \\
g(5)
\end{array}\right]
$$

(Here, we pretend $g(i)=0$ for $i<1$ and $i>5$.)

Figure 8: Convolutional layer

Convolutions III

- Similar for 2D inputs (e.g., images), except now sum over two indices
- g is the input image
- f is the filter
- Lots of variations (e.g., padding, strides, multiple "channels")
- Use additional layers/activations to down-sample after convolution
- E.g., max-pooling

Figure 9: 2D convolution

Figure 10: 2D convolution

Figure 11: 2D convolution

Figure 12: 2D convolution

