Machine learning lecture slides

COMS 4771 Fall 2020

0/36

Optimization IlI: Neural networks

» Architecture of (layered) feedforward neural networks
» Universal approximation

» Backpropagation

» Practical issues

1/36

Parametric featurizations

» So far: data features (x or ¢(x)) are fixed during training
» Consider a (small) collection of feature transformations ¢
» Select ¢ via cross-validation — outside of normal training
> “Deep learning” approach:
» Use o with many tunable parameters
» Optimize parameters of ¢ during normal training process
» Neural network: parameterization for function f: RY — R
> f(z) =p(x)w
» Parameters include both w and parameters of ¢
» Varying parameters of ¢ allows f to be essentially any function!
» Major challenge: optimization

Figure 1: Neural networks as feature maps

2/36

Feedforward neural network

» Architecture of a feedforward neural network

VVVVYYVY

» g,: R— Ris the activation function (a.k.a. link function)

>

Directed acyclic graph G = (V, E)

One source node (vertex) per input to the function (21, ..

One sink node per output of the function

Internal nodes are called hidden units

Each edge (u,v) € E has a weight parameter w,,,, € R
Value h, of node v given values of parents

ma(v) ={ueV:(u,v) € E}is

hv —Uv(zv E wuv' u-

ueng(v)

E.g., sigmoid function o,(z) =1/(1+ e *)

» Inspired by neurons in the bram

'7xd)

3/36

Figure 2: Computation DAG of a feedforward neural network

4/36

Standard layered architectures

» Standard feedforward architecture arranges nodes into layers
» Initial layer (layer zero): source nodes (input)
» Final layer (layer L): sink nodes (output)
» (Layer counting is confusing; usually don't count input)
» Edges only go from one layer to the next
» (Non-standard feedforward architectures (e.g., ResNets) break
this rule)
» Can write function using matrices of weight parameters

f(@) =oL(Wropa(---or(Whz)---))

» Layer ¢ has d; nodes

> TV, € R*de-1 are the weight parameters for layer ¢

» Scalar-valued activation function o,: R — R (e.g., sigmoid) is
applied coordinate-wise to input

» Often also include “bias” parameters b, € R%
f(x) = UL(bL + WLJL_l(- . '01(b1 + Wll') cee))
» The tunable parameters: 6 = (Wy,b1,..., W, br)

5/36

input hidden units output

Figure 3: Layered feedforward neural network

6/36

Well-known activation functions

» Heaviside: o(z) = 1{,>0}
» Popular in the 1940s; also called step function
» Sigmoid (from logistic regression): o(z) =1/(1 + e ?)
» Popular since 1970s
» Hyperbolic tangent: o(z) = tanh(z)
» Similar to sigmoid, but range is (—1,1) rather than (0, 1)
» Rectified Linear Unit (ReLU): o(z) = maX{O z}
» Popular since 2012
» Identity: o(z) =z
» Popular with luddites

7/36

Power of non-linear activations

» What happens if every activation function is linear/affine?

» Overall function is affine
» An unusual way to parameterize an affine function

» Therefore, use non-linear/non-affine activation functions

8/36

Necessity of multiple layers (1)

» Suppose only have input and output layers, so function f is
f(@) = o(b+w'a)
where b € R and w € R? (so w" € R!*9)

» If o is monotone (e.g., Heaviside, sigmoid, hyperbolic tangent,

ReLU, identity), then f has same limitations as a linear/affine
classifier

X 0]

(@) X

Figure 4: XOR data set

9/36

Necessity of multiple layers (2)

» XOR problem
> Let 2D = (+1,+1), 2?2 = (+1,-1), 2 = (=1, +1),
@ = (=1,-1).
» y(®) = 11 iff coordinates of z(*) are the same. (XNOR)
> Suppose (w,b) € R? x R satisfies

—b—w'z® <0,
b+w'z® <0,
b+wz® <o0.

» Add up the equations:
b+w (z® + 23 —2M) <0,
» But 2@ + 20 — (1) = 2™ 5o
b+wz® <.

In other words, cannot correctly label (4.
10/36

Neural network approximation theorems

» Theorem (Cybenko, 1989; Hornik, Stinchcombe, & White,
1989): Let o1 be any continuous non-linear activation function
from above. For any continuous function f: R¢ — R and any
e > 0, there is a two-layer neural network (with parameters

0= (Wl,bl,wg)) s.t.

max |f(z) —wyo1(by + Whz)| < e.
z€0,1]¢
» This property of such families of neural networks is called
universal approximation.
> Many caveats

> “Width” (number of hidden units) may need to be very large
» Does not tell us how to find the network
» Does not justify deeper networks

11/36

Stone-Weierstrass theorem (polynomial version)

Theorem (Weierstrass, 1885): For any continuous function
f:la,b] = R, and any € > 0, there exists a polynomial p such that

sup [£(x) — ple)] < e
z€[a,b]

12/36

Stone-Weierstrass theorem (general version)

Theorem (Stone, 1937): Let K C RY be any bounded set. Let A

be a set of continuous functions on K such that the following hold.

(1) Ais an algebra (i.e., A is closed under addition, multiplication,

and scalar multiplication).

(2) A does not vanish on K (i.e., for all x € K, there exists
h € A such that h(z) # 0).

(3) A separates points in K (i.e., for all distinct z,y € K, there
exists h € A such that h(z) # h(y)).

For any continuous function f: K — R, and any € > 0, there exists
h € A such that

sup | f(z) — h(z)| <e.
zeK

13/36

Two-layer neural networks with cosine activation functions

Let K = [0,1]¢, and let
m
A= {x — Z a, cos(z wy + by) :
k=1

m e N, ag, b, € R, wy, € R? forkzl,...,m}.

(Check that A satisfies properties of Stone-Weierstrass theorem.)

14 /36

Two-layer neural networks with exp activation functions

Let K = [0,1]¢, and let
m
A= {x — Z ag exp(z wy, + by) :
k=1

m e N, ag, b, € R, wy, € R? forkzl,...,m}.

(Check that A satisfies properties of Stone-Weierstrass theorem.)

15/36

Fitting neural networks to data

» Training data (z1,91),-- ., (Tn,yn) € RTx R
» Fix architecture: G = (V, E) and activation functions
» ERM: find parameters 6 of neural network fy to minimize

empirical risk (possibly with a surrogate loss)
» Regression y; € R

1 n

7%(9) = n Z(fe(l’i) - yi)2

» Binary classification y; € {—1,+1}

R(6) = > (1 + exp(—ifo(:)

i=1
(Could use other surrogate loss functions ...)

» Can also add regularization terms, but also common to use
algorithmic regularization

> Typically objective is not convex in parameters 6

» Nevertheless, local search (e.g., gradient descent, SGD) often
works well!

16 /36

Backpropagation

» Backpropagation (backprop): Algorithm for computing partial
derivatives wrt weights in a feedforward neural network

» Clever organization of partial derivative computations with
chain rule
» Use in combination with gradient descent, SGD, etc.

» Consider loss on a single example (z,y), written as

J = Uy, fo(z))

» Goal: compute 8‘” for every edge (u,v) € E
» Initial step of backprop forward propagation

» Compute z,’s and h,’s for every node v € V
» Running time: linear in size of network

> We'll see that rest of backprop also just requires time linear in
size of network

17/36

Derivative of loss with respect to weights

> Let 91,92, ... denote the values at the output nodes.

» Then by chain rule,
oJ oJ 0y

Wy, i 83/1 Wy v

> ngJi is just determined by the loss function (e.g., squared loss)
» So just have to focus on %
> Assume for simplicity there is just a single output, §

18/36

Derivative of output with respect to weights

» Chain rule, again:

oy 0y ' Oh,,
0wy ~ Oh, Owy v

» First term: trickier; we'll handle later
» Second term:
> h'u = UU(Z’U)
> 2z, = Wy - hy + (terms not involving w,,)
» Therefore
Oh, Oh, 0z,
Owy, v T 9z, 0wy,

=0'(2y) * hu.

» 2, and h, were computed during forward propagation

19/36

Figure 5: Derivative of a node’s output with respect to an incoming weight

20/36

Derivative of output with respect to hidden units

» Key trick: compute %{J for all vertices in decreasing order of
layer number
» If v is not the output node, then by chain rule (yet again),

9 09 Ohy
o, Ohy Ohy
v':(vv)EE

a?%, was already computed since v’ is in higher layer than v
h”U’ = O',U/(Zv/)
Zy! = Wy,y - Iy + (terms not involving hy)

Therefore

vvyyvyy

Ohy Ohy Dz
8hv - 62’1,/ 8hv

= UI(ZUI) * Wy ! -

» z,'s were computed during forward propagation
» w, ,'s are the values of the weight parameters at which we
want to compute the gradient
21/36

Figure 6: Derivative of the network output with respect to hidden unit
values

22/36

Example: chain graph (1)

» Function fp: R - R
» Architecture
» DAG.0 —1—2— .-+ — L
» Same activation o in every layer
» Parameters 6 = (wo,1,w1,2,...,Wr—1,1,)

» Input is at vertex 0, and output is at vertex L
» Fix input value € R; what is 88
» Forward propagation:

> hyi==x

» Fori=1,2,...,L:

Zi = wifl,ihifl
h; == 0o(z;)

forz—l

23/36

Example: chain graph (2)

» Backprop:
» Fori=L,L—1,...,1:
ohp 1 ifi=1
8hz o 3(31};i1 . 0/(2i+1)wi’i+1 ifi1< L
Ohr, Ohp,
G om 7 Gk

.wo,l .w1,2 wal,L:

input

output

Figure 7: Neural network with a chain computation graph

Practical issues |: Initialization

» Ensure inputs are standardized: every feature has zero mean
and unit variance (wrt training data)
» Even better: different features have zero covariance (again, on

>

training data)
But this can be expensive

» Initialize weights randomly for gradient descent / SGD

>

>
>
>

v

Standard normal random variables (or similar)

What should variance be?

Heuristic: ensure h, have similar statistics as inputs

E.g., using tanh-activation, if v has in-degree k, use variance
1/k for all weights w, ,

Many initialization schemes for other activations (e.g., ReLU),
dealing with bias parameters, ...

25/36

Practical issues Il: Architecture choice

» Architecture can be regarded as a “hyperparameter”
» Could use cross-validation to select, but . ..
» Many “good” architectures are known for popular problems
(e.g., image classification)
» Unclear what to do for completely new problems
» Optimization-inspired architecture choice
» With wide enough network, can get zero training error
» Use the smallest network that lets you get zero training error
» Then add regularization term to objective (e.g., sum of squares
of weights), and optimize the regularized ERM objective

» Entire research communities are trying to figure out good
architectures for their problems

26/36

Vector-valued activation: o: R% —s R

> Softmax activation: o(v); = exp(v;)/ > ; exp(v;)
» Common to use this in final layer

27/36

Convolutional nets

» Neural networks with convolutional layers

» Useful when inputs have locality structure
» Sequential structure (e.g., speech waveform)
» 2D grid structure (e.g., image)

> ..

» Weight matrix W, is highly-structured

» Determined by a small filter
» Time to compute Wyh,_1 is typically < dy x dy—1 (e.g., closer
to max{dy, d¢—1})

28/36

Convolutions |

» Convolution of two continuous functions: h:= f xg
“+o0o
ha) = [@9 - y)dy
» If f(z) =0 for z ¢ [—w, +w], then
+w
h(z) = fW)g(z —y)dy

» Replaces g(x) with weighted combination of g at nearby points

29/36

Convolutions 1l

» For functions on discrete domain, replace integral with sum

Zf

j=—00

(i —J)

E.g., suppose only f(0), f(1), f(2) are non-zero. Then:

[——

T
o O o o

(Here, we pretend g(i) =0 for i < 1 and ¢ > 5.)

0) 0 0 0 0 |

(1) f(0) 0 0 0

(2) f(1) f(O) o0 0
f(2) fQ) f(0) 0
0 f(2) f(1) f(0)
0 0 f(2) f(Q1)
0 0 0 f(2

30/36

Figure 8: Convolutional layer

31/36

Convolutions Il

» Similar for 2D inputs (e.g., images), except now sum over two
indices
» g is the input image
> fis the filter
» Lots of variations (e.g., padding, strides, multiple “channels™)
» Use additional layers/activations to down-sample after
convolution
» E.g., max-pooling

32/36

on

2D convoluti

igure 9:

F

33/36

Figure 10: 2D convolution

34/36

on

: 2D convoluti

igure 11

F

35/36

on

2D convoluti

igure 12:

F

36/36

	Optimization II: Neural networks

