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Classification Il: Margins and SVMs



» Perceptron

» Margins

» Support vector machines
» Soft-margin SVM
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Perceptron (1)

» Perceptron: a variant of SGD

>
>

>

Uses hinge loss: Chinge(s) := max{0,1 — s}

Uses conservative updates: only update when there is
classification mistake

Step sizen =1

Continues updating until all training examples correctly
classified by current linear classifier

zero-one loss
2 hinge loss
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Figure 1: Comparing hinge loss and zero-one loss
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Perceptron (2)

> Start with w(® = 0.
» Fort=1,2,... until all training examples correctly classified
by current linear classifier:

» Pick a training example—call it (z;, y;)—misclassified by
,w(t—l).
» Update:

w® = w = Ve (pajw™).
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Perceptron (3)

> Note that whenever 2w~ <0,
Veninge (e w!™1) = fﬁinge(ytiﬂzw(t_l)) ‘Y = —1 -y

» So update is
w® =Y 4 YTt

» Final solution is of the form
W= yii
€S

for some multiset S of {1,...,n}.
» Possible to include same example index multiple times in S
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Properties of Perceptron

» Suppose (21,1); -+, (Tn, Yn) € RY x {—1,41} is linearly
separable.

» Does Perceptron find a linear separator? (Yes.) How quickly?

» Depends on margin achievable on the data set—how much
wiggle room there is for linear separators.

Figure 2: Linearly separable data
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Margins (1)

» Margin achieved by w on i-th training example is the distance
from y;x; to decision boundary:

L YT, w

700) =

» Maximum margin achievable on all training examples:

Ve = max Hliln%‘(w)~

» Theorem: If training data is linearly separable, Perceptron
finds a linear separator after making at most (L/~,)? updates,
where L = max; ||z;]|2.
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Figure 3: Margins
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Margins (2)

> Let w be a linear separator:

yirjw>0, i=1,...,n.
» Note: Scaling of w does not change margin achieved on i-th
example
N
YiT; w
Yi(w) = '
' [[wll2

» WLOG assume yjzjw = min; y;x; w.

> So x; is closest to decision boundary among all training
examples.

» Rescale w so that yjzjw = 1.

» Distance from y;x; to decision boundary is 1/[|wl|2.

» The shortest w satisfying

yirjw>1, i=1,....n

gives the linear separator with the maximum margin on all
training examples.
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Support vector machine

> Weight vector of maximum margin linear separator: defined as
solution to optimization problem

. 1 9
min —|lw
weR4 2” H2

subject to  yizjw >1, i=1,...,n.

(The 1/2 prefactor is customary but inconsequential.)

» This is the support vector machine (SVM) optimization
problem.

» Feasible when data are linearly separable.

> Note: Preference for the weight vector achieving the maximum
margin is another example of inductive bias.
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Support vectors

» Just like least norm solution to normal equations (and ridge
regression), solution w to SVM problem can be written as
Yo agyix; for some aq, ..., € R (in fact, a; > 0)

> (Adding r € R? orthogonal to span of z;'s to weight vector can
only increase the length without changing the constraint values.)

» The examples (z;,y;) for which «; # 0 are called
support vector examples: they have y;x]w = 1 and are closest
to decision boundary.
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Soft-margin SVM (1)

» What if not linearly separable? SVM problem has no solution.
» Introduce slack variables for constraints, and C' > 0:

1 9 "
min —llwl||5+C ;
sy IO
subject to yizjw >1-&, i=1,...,n.

» This is the soft-margin SVM optimization problem.
» A constrained convex optimization problem

» For given w, & /||w||2 is distance that x; has to move to satisfy
yix;w > 1.
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Soft-margin SVM (2)
» Equivalent unconstrained form:
1 n
H&@z §||w\|§ + Clz::l max{0,1 — y;z;w}.

» Rewriting using A = 1/(nC') and fpinge:

1 & A
min =Y aTw) + = |lwl2.
min 3 g (vialw) + 5
» Same template as ridge regression, Lasso, ... !

» Data fitting term (using a surrogate loss function)
» Regularizer that promotes inductive bias
» )\ controls trade-off of concerns

» Both SVM and soft-margin SVM can be kernelized
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