Machine learning lecture slides

COMS 4771 Fall 2020

Optimization I: Convex optimization

Outline

- Convex sets and convex functions
- Local minimizers and global minimizers
- Gradient descent
- Analysis for smooth objective functions
- Stochastic gradient method
- Gradient descent for least squares linear regression

Convex set: a set that contains every line segment between pairs of points in the set.

- Examples:
 - All of \mathbb{R}^d
 - Empty set
 - Half-spaces
 - Intersections of convex sets
 - Convex hulls

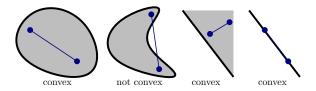


Figure 1: Which of these sets are convex?

Convex functions (1)

Convex function: a function satisfying the two-point version of Jensen's inequality:

 $f((1-\alpha)w + \alpha w') \le (1-\alpha)f(w) + \alpha f(w'), \quad w, w' \in \mathbb{R}^d, \alpha \in [0,1].$

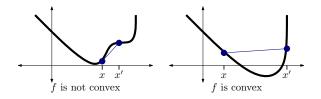


Figure 2: Which of these functions are convex?

Convex functions (2)

Examples: • f(w) = c for $c \in \mathbb{R}$ $\blacktriangleright f(w) = \exp(w) \text{ (on } \mathbb{R})$ • $f(w) = |w|^c$ for $c \ge 1$ (on \mathbb{R}) • $f(w) = b^{\mathsf{T}} w$ for $b \in \mathbb{R}^d$ ▶ f(w) = ||w|| for any norm $||\cdot||$ • $f(w) = w^{\mathsf{T}}Aw$ for any symmetric positive semidefinite matrix A • $w \mapsto af(w) + g(w)$ for convex functions f, g and $a \ge 0$ • $w \mapsto \max\{f(w), g(w)\}$ for convex functions f, g• $f(w) = \text{logsumexp}(w) = \ln\left(\sum_{i=1}^{d} \exp(w_i)\right)$ • $w \mapsto f(g(w))$ for convex function f and affine function g

Verifying convexity of Euclidean norm

▶ Verify f(w) = ||w|| is convex

Convexity of differentiable functions (1)

Differentiable function f is convex iff

 $f(w) \ge f(w_0) + \nabla f(w_0)^{\mathsf{T}}(w - w_0) \qquad \text{for all } w, w_0 \in \mathbb{R}^d.$

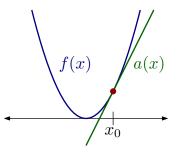


Figure 3: Affine approximation

• Twice-differentiable function f is convex iff $\nabla^2 f(w)$ is positive semidefinite for all $w \in \mathbb{R}^d$.

Convexity of differentiable functions (2)

• Example: Verify $f(w) = w^4$ is convex

Use second-order condition

Convexity of differentiable functions (3)

• Example: Verify $f(w) = e^{b^{\mathsf{T}}w}$ for $b \in \mathbb{R}^d$ is convex

Use first-order condition

Verifying convexity of least squares linear regression

• Verify $f(w) = ||Aw - b||_2^2$ is convex

Verifying convexity of logistic regression MLE problem

• Verify
$$f(w) = \frac{1}{n} \sum_{i=1}^{n} \ln(1 + e^{-y_i x_i^{\mathsf{T}} w})$$
 is convex

Local minimizers

- ▶ Say $w^* \in \mathbb{R}^d$ is a <u>local minimizer</u> of $f : \mathbb{R}^d \to \mathbb{R}$ if there is an "open ball" $U = \{w \in \mathbb{R}^d : ||w w^*||_2 < r\}$ of positive radius r > 0 such that $f(w^*) \le f(w)$ for all $w \in U$.
- ▶ I.e., nothing looks better in the immediate vicinity of w^* .

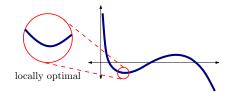


Figure 4: Local minimizer

Local minimizers of convex problems

- ► If f is convex, and w^{*} is a local minimizer, then it is also a global minimizer.
- "Local to global" phenomenon
- Local search is well-motivated for convex optimization problems

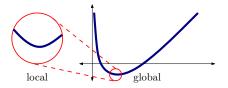


Figure 5: Local-to-global phenomenon

Gradient descent

Consider (unconstrained) convex optimization problem

 $\min_{w \in \mathbb{R}^d} \quad f(w).$

- Gradient descent: iterative algorithm for (approximately) minimizing f
- Given <u>initial iterate</u> $w^{(0)} \in \mathbb{R}^d$ and <u>step size</u> $\eta > 0$,

For
$$t = 1, 2, ...$$
:

$$w^{(t)} := w^{(t-1)} - \eta \nabla f(w^{(t-1)}).$$

▶ (Lots of things unspecified here ...)

Motivation for gradient descent

- Why move in direction of (negative) gradient?
- Affine approximation of $f(w + \delta)$ around w:

$$f(w+\delta) \approx f(w) + \nabla f(w)^{\mathsf{T}} \delta.$$

Therefore, want δ such that ∇f(w)^Tδ < 0
 Use δ := −η∇f(w) for some η > 0:

$$\nabla f(w)^{\mathsf{T}}(-\eta \nabla f(w)) = -\eta \| \nabla f(w) \|_{2}^{2} < 0$$

as long as $\nabla f(w) \neq 0$.

Need η to be small enough so still have improvement given error of affine approximation.

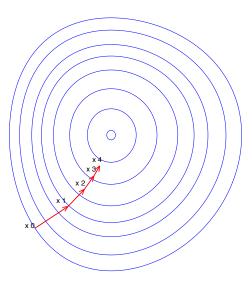


Figure 6: Trajectory of gradient descent

Example: Gradient of logistic loss

 Negative gradient of logistic loss on *i*-th training example: using chain rule,

$$-\nabla \{\ell_{\text{logistic}}(y_i x_i^{\mathsf{T}} w)\} = -\ell_{\text{logistic}}'(y_i x_i^{\mathsf{T}} w) y_i x_i$$
$$= \left(1 - \frac{1}{1 + \exp(-y_i x_i^{\mathsf{T}} w)}\right) y_i x_i$$
$$= (1 - \sigma(y_i x_i^{\mathsf{T}} w)) y_i x_i$$

where σ is the sigmoid function.

► Recall, $\Pr_w(Y = y \mid X = x) = \sigma(yx^{\mathsf{T}}w)$ for (X, Y) following the logistic regression model.

Example: Gradient descent for logistic regression

Objective function:

$$f(w) := \frac{1}{n} \sum_{i=1}^{n} \ell_{\text{logistic}}(y_i x_i^{\mathsf{T}} w).$$

▶ Gradient descent: given <u>initial iterate</u> w⁽⁰⁾ ∈ ℝ^d and <u>step size</u> η > 0,
 ▶ For t = 1, 2, ...:

$$w^{(t)} := w^{(t-1)} - \eta \nabla f(w^{(t-1)})$$

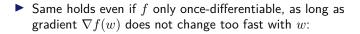
= $w^{(t-1)} + \eta \frac{1}{n} \sum_{i=1}^{n} (1 - \sigma(y_i x_i^{\mathsf{T}} w^{(t-1)})) y_i x_i$

- Interpretation of update:
 - How much of $y_i x_i$ to add to $w^{(t-1)}$ is scaled by how far $\sigma(y_i x_i^{\mathsf{T}} w^{(t-1)})$ currently is from 1.

Convergence of gradient descent on smooth objectives

▶ **Theorem**: Assume f is twice-differentiable and convex, and $\lambda_{\max}(\nabla^2 f(w)) \leq \beta$ for all $w \in \mathbb{R}^d$ ("f is <u> β -smooth</u>"). Then gradient descent with step size $\eta := 1/\beta$ satisfies

$$f(w^{(t)}) \le f(w^*) + \frac{\beta \|w^{(0)} - w^*\|_2^2}{2t}$$



$$\|\nabla f(w) - \nabla f(w')\|_{2} \le \beta \|w - w'\|_{2}.$$

Note: it is possible to have convergence even with η > 1/β in some cases; should really treat η as a hyperparameter.

Example: smoothness of empirical risk with squared loss

Empirical risk with squared loss

$$\nabla^2 \left\{ \|Aw - b\|_2^2 \right\} = A^{\mathsf{T}} A.$$

So objective function is β -smooth with $\beta = \lambda_{\max}(A^{\mathsf{T}}A)$.

Example: smoothness of empirical risk with logistic loss

Empirical risk with logistic loss

$$\nabla^2 \left\{ \frac{1}{n} \sum_{i=1}^n \ln(1 + \exp(-y_i x_i^{\mathsf{T}} w)) \right\}$$

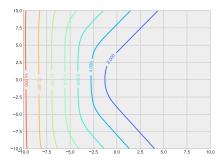


Figure 7: Gradient descent for logistic regression

Analysis of gradient descent for smooth objectives (1)

▶ By Taylor's theorem, can upper-bound $f(w + \delta)$ by quadratic:

$$f(w+\delta) \le f(w) + \nabla f(w)^{\mathsf{T}} \delta + \frac{\beta}{2} \|\delta\|_2^2.$$

Gradient descent is based on making local quadratic upper-bounds, and minimizing that quadratic:

$$\min_{\delta \in \mathbb{R}^d} f(w) + \nabla f(w)^{\mathsf{T}} \delta + \frac{\beta}{2} \|\delta\|_2^2.$$

Minimized by $\delta := -\frac{1}{\beta} \nabla f(w)$. Plug-in this value of δ into above inequality to get

$$f\left(w - \frac{1}{\beta}\nabla f(w)\right) - f(w) \le -\frac{1}{2\beta} \|\nabla f(w)\|_2^2$$

Analysis of gradient descent for smooth objectives (2)

If f is convex (in addition to β-smooth), then repeatedly making such local changes is sufficient to approximately minimize f.

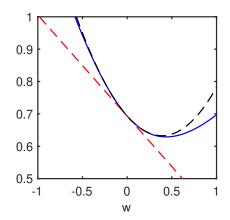


Figure 8: Linear and quadratic approximations to a convex function

Example: Text classification (1)

- Data: articles posted to various internet message boards
- ► Label: -1 for articles from "religion", +1 for articles from "politics"
- Features:
 - ▶ Vocabulary of d = 61188 words
 - Each document is a binary vector $x \in \{0,1\}^d$, where

 $x_i = \mathbf{1}_{\{\text{document contains } i-\text{th vocabulary word}\}}$

 \blacktriangleright Executed gradient descent with $\eta=0.25$ for 500 iterations

Example: Text classification (2)

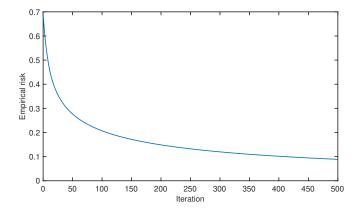


Figure 9: Objective value as a function of number of gradient descent iterations

Example: Text classification (3)

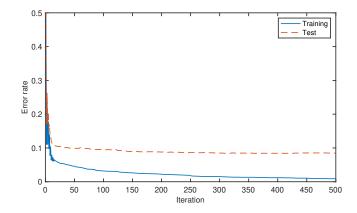


Figure 10: Error rate as a function of number of gradient descent iterations

Stochastic gradient method (1)

- Every iteration of gradient descent takes $\Theta(nd)$ time.
 - Pass through all training examples to make a single update.
 - If n is enormous, too expensive to make many passes.
- Alternative: Stochastic gradient descent (SGD)
 - Another example of plug-in principle!
 - Use one or a few training examples to estimate the gradient.
 - Gradient at $w^{(t)}$:

$$\frac{1}{n}\sum_{j=1}^{n}\nabla\ell(y_jx_j^{\mathsf{T}}w^{(t)}).$$

(A.k.a. full batch gradient.)

Pick term J uniformly at random:

$$\nabla \ell(y_J x_J^{\mathsf{T}} w^{(t)}).$$

What is expected value of this random vector?

Stochastic gradient method (2)

Minibatch

► To reduce variance of estimate, use several random examples J_1, \ldots, J_B and average—called *minibatch gradient*.

$$\frac{1}{B}\sum_{b=1}^{B}\nabla\ell(y_{J_b}x_{J_b}^{\mathsf{T}}w^{(t)}).$$

• Rule of thumb: larger batch size $B \rightarrow$ larger step size η .

- Alternative: instead of picking example uniformly at random, shuffle order of training examples, and take next example in this order.
 - Verify that expected value is same!
 - Seems to reduce variance as well, but not fully understood.

Example: SGD for logistic regression

- Logistic regression MLE for data (x₁, y₁),..., (x_n, y_n) ∈ ℝ^d × {−1, +1}.
 Start with w⁽⁰⁾ ∈ ℝ^d, η > 0, t = 1
- For epoch $p = 1, 2, \ldots$:

For each training example (x, y) in a random order:

$$w^{(t)} := w^{(t-1)} + \eta (1 - \sigma(yx^{\mathsf{T}}w^{(t-1)}))yx$$

$$t := t + 1.$$

Optimization for linear regression

- Back to considering ordinary least squares.
- Gaussian elimination to solve normal equations can be slow when d is large (time is $O(nd^2)$).
- Alternative: find approximate solution using gradient descent
- Algorithm: start with some $w^{(0)} \in \mathbb{R}^d$ and $\eta > 0$.

• For t = 1, 2, ...:

$$w^{(t)} := w^{(t-1)} - 2\eta A^{\mathsf{T}} (Aw^{(t-1)} - b)$$

- Time to multiply matrix by vector is linear in matrix size.
 So each iteration takes time O(nd).
- Can describe behavior of gradient descent for least squares (empirical risk) objective very precisely.

Behavior of gradient descent for linear regression

► Theorem: Let ŵ be the minimum Euclidean norm solution to normal equations. Assume w⁽⁰⁾ = 0. Write eigendecomposition A^TA = ∑_{i=1}^r λ_iv_iv_i^T with λ₁ ≥ λ₂ ≥ ··· ≥ λ_r > 0. Then w^(t) ∈ range(A^T) and

$$v_i^{\mathsf{T}} w^{(t)} = \left(2\eta \lambda_i \sum_{k=0}^{t-1} (1 - 2\eta \lambda_i)^k \right) v_i^{\mathsf{T}} \hat{w}, \quad i = 1, \dots, r.$$

Implications:

• If we choose η such that $2\eta\lambda_i < 1$, then

$$2\eta\lambda_i \sum_{k=0}^{t-1} (1 - 2\eta\lambda_i)^k = 1 - (1 - 2\eta\lambda_i)^t,$$

which converges to 1 as $t \to \infty$.

• So, when $2\eta \lambda_1 < 1$, we have $w^{(t)} \to \hat{w}$ as $t \to \infty$.

- Rate of convergence is geometric, i.e., "exponentially fast convergence".
- Algorithmic inductive bias!

Postscript

- There are many optimization algorithms for convex optimization
 - Gradient descent, Newton's method, BFGS, coordinate descent, mirror descent, etc.
 - Stochastic variants thereof
- Many also usable even when objective function is non-convex
 - Typically just converge to a local minimizer or stationary point
- Can also handle constraints on the optimization variable
 - E.g., want coordinates of w to lie in a specific range
- The algorithmic inductive bias not always well-understood, but it is there!