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Optimization |I: Convex optimization



Outline

» Convex sets and convex functions

» Local minimizers and global minimizers

» Gradient descent

» Analysis for smooth objective functions

» Stochastic gradient method

» Gradient descent for least squares linear regression
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Convex sets

> Convex set: a set that contains every line segment between
pairs of points in the set.
> Examples:
> All of R?
» Empty set
» Half-spaces
» Intersections of convex sets
» Convex hulls

QAXN

convex not, convex convex convex

Figure 1: Which of these sets are convex?
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Convex functions (1)

» Convex function: a function satisfying the two-point version of
Jensen's inequality:

f(Ql—a)w+aw') < (1—a)f(w)+af(w'), w,w eR%ael0,1].
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f is not convex f is convex

Figure 2: Which of these functions are convex?
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Convex functions (2)

> Examples:

> f(w)=cforceR

> 7(w) = exp(w) (on R)

> f(w) = |w|® for ¢ >1 (on R)

> f(w)=0b"w for b € RY

> F(w) = ] for any norm | - |

» f(w)=w"Aw for any symmetric positive semidefinite matrix A
> w— af(w)+ g(w) for convex functions f,g and a >0

» w — max{f(w), g(w)} for convex functions f,g

» f(w) = logsumexp(w) = In (Z,‘::l exp(wi)>

» w— f(g(w)) for convex function f and affine function g
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» Verify f(w) = ||w]| is convex
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Convexity of differentiable functions (1)

> Differentiable function f is convex iff

f(w) > f(wo) + V f(wo) " (w — wp) for all w, wy € R%.

&

Figure 3: Affine approximation

» Twice-differentiable function f is convex iff V2 f(w) is positive

semidefinite for all w € R,
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» Example: Verify f(w) = w* is convex

» Use second-order condition

7/32



» Example: Verify f(w) = et for b € RY is convex
» Use first-order condition
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> Verify f(w) = ||Aw — b||3 is convex
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> Verify f(w) =157 In(1+ e~ W) s convex
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Local minimizers

» Say w* € R% is a local minimizer of f: R — R if there is an
“open ball” U = {w € R? : ||w — w*||2 < r} of positive radius
r > 0 such that f(w*) < f(w) for all w € U.

» |.e., nothing looks better in the immediate vicinity of w*.

locally optin;aT T -

Figure 4. Local minimizer
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Local minimizers of convex problems

» If f is convex, and w* is a local minimizer, then it is also a
global minimizer.

> “Local to global” phenomenon

» Local search is well-motivated for convex optimization problems
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Figure 5: Local-to-global phenomenon
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Gradient descent

» Consider (unconstrained) convex optimization problem

min w).
weRd f( )
» Gradient descent: iterative algorithm for (approximately)
minimizing f
> Given initial iterate w®) € R% and step size n > 0,
> Fort=1,2,...

w® = W=D _ ¥ (D),

» (Lots of things unspecified here .. .)
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Motivation for gradient descent

>
>

Why move in direction of (negative) gradient?
Affine approximation of f(w + §) around w:

fw+0) ~ f(w)+ Vf(w)'e.

Therefore, want § such that V f(w)"d <0
Use § := —nV f(w) for some 1 > 0:

V(W) (=nVf(w)) = =nllVF(w)l3 <0

as long as V f(w) # 0.
Need 7 to be small enough so still have improvement given
error of affine approximation.
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Figure 6: Trajectory of gradient descent

15/32



Example: Gradient of logistic loss

> Negative gradient of logistic loss on i-th training example:
using chain rule,

- V{glogistic (ylx;rw) } = _Ziogistic (ylx;rw)ylxl

1
=(1- i T
< 1+ exp(—ym{w)) Y

= (1 - o(yizjw))yiz;

where ¢ is the sigmoid function.
» Recall, Pr,(Y =y | X =2) = o(yz"w) for (X,Y) following
the logistic regression model.
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Example: Gradient descent for logistic regression

» Objective function:

1
f(w) = n Zglogistic(yix;—w)-

=1

» Gradient descent: given initial iterate w(®) € R% and step size
n > 0,
> Fort=1,2,...

w® = wtD — v f(wtY)
1 n
= w4 0= 31— o(yiafw D)y
i=1
» Interpretation of update:

» How much of y;z; to add to w*~Y is scaled by how far
o(ysxlw=1) currently is from 1.
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Convergence of gradient descent on smooth objectives

» Theorem: Assume f is twice-differentiable and convex, and
Amax (V2 f(w)) < B for all w € R? (“f is B-smooth"). Then
gradient descent with step size 7 := 1/ satisfies

0) _ 12
f(w(t)) < f(w*)+ BHw 5 w H2

» Same holds even if f only once-differentiable, as long as
gradient V f(w) does not change too fast with w:

IV f(w) = V()2 < Bllw — w2,

> Note: it is possible to have convergence even with n > 1/5 in
some cases; should really treat 7 as a hyperparameter.
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Example: smoothness of empirical risk with squared loss

» Empirical risk with squared loss
V2 {]|Aw - b3} = AA.

So objective function is S-smooth with 5 = Aax(ATA).
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Example: smoothness of empirical risk with logistic loss

» Empirical risk with logistic loss

v? {711 i In(1 + eXp(—yixIw))}

1=1
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Figure 7: Gradient descent for logistic regression
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Analysis of gradient descent for smooth objectives (1)

» By Taylor's theorem, can upper-bound f(w + §) by quadratic:

Flw+8) < Fw) +V /(w8 + 5 5]3

» Gradient descent is based on making local quadratic
upper-bounds, and minimizing that quadratic:

e, B
min f(w) + V£ (w)'5 + Sl

Minimized by ¢ := =4V f(w).
» Plug-in this value of ¢ into above inequality to get

f (w— ;Vf(w)> — flw) < —*HVf( )3
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Analysis of gradient descent for smooth objectives (2)

» If f is convex (in addition to S-smooth), then repeatedly
making such local changes is sufficient to approximately
minimize f.
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Figure 8: Linear and quadratic approximations to a convex function
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Example: Text classification (1)

> Data: articles posted to various internet message boards

» Label: —1 for articles from “religion”, +1 for articles from
“politics”

» Features:

» Vocabulary of d = 61188 words
» Each document is a binary vector z € {0,1}%, where

T; = ]-{document contains i-th vocabulary word}

» Executed gradient descent with 1 = 0.25 for 500 iterations
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Example: Text classification (2)

Empirical risk

0 50 100 150 200 250 300 350 400 450 500
Iteration

Figure 9: Objective value as a function of number of gradient descent
iterations
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Example: Text classification (3)
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Figure 10: Error rate

as a function of number of gradient descent iterations
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Stochastic gradient method (1)

» Every iteration of gradient descent takes ©(nd) time.
» Pass through all training examples to make a single update.
» If n is enormous, too expensive to make many passes.

» Alternative: Stochastic gradient descent (SGD)

» Another example of plug-in principle!
» Use one or a few training examples to estimate the gradient.
» Gradient at w("):

1< ;
-~ Z Vf(ijjw(t)).

Jj=1

(A.k.a. full batch gradient.)
» Pick term J uniformly at random:

Vi(ysahw®).
» What is expected value of this random vector?
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Stochastic gradient method (2)

» Minibatch

» To reduce variance of estimate, use several random examples
J1,...,Jp and average—called minibatch gradient.

B
> Vilysal,w?).
b=1

Wl =

» Rule of thumb: larger batch size B — larger step size 7.
» Alternative: instead of picking example uniformly at random,
shuffle order of training examples, and take next example in
this order.

» Verify that expected value is same!
» Seems to reduce variance as well, but not fully understood.
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Example: SGD for logistic regression

P> Logistic regression MLE for data
(1,91)s -+, (Tny Yn) € RE x {—1,4+1}.
» Start with w@ e R, >0, t=1
» For epochp=1,2,...
» For each training example (z,y) in a random order:

w® = w4 (1 - o(yz"wV))yx
t:=t+1.
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Optimization for linear regression

» Back to considering ordinary least squares.
» Gaussian elimination to solve normal equations can be slow
when d is large (time is O(nd?)).
» Alternative: find approximate solution using gradient descent
» Algorithm: start with some w(® € R? and 1 > 0.
» Fort=1,2,...:

w®) = =1 _ QT]AT(Aw(tfl) —b)

» Time to multiply matrix by vector is linear in matrix size.
» So each iteration takes time O(nd).

» Can describe behavior of gradient descent for least squares
(empirical risk) objective very precisely.
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Behavior of gradient descent for linear regression

» Theorem: Let w be the minimum Euclidean norm solution to
normal equations. Assume w(®) = 0. Write eigendecomposition
ATA = 2;21 )\Z"U,"UiT with Ay > Ao > - > A, > 0. Then
w®) € range(AT) and

t—1
viw® = [ 2n\; Z(l —o\)F | ofw, i=1,...,r
k=0

» Implications:

» If we choose 1 such that 2n)\; < 1, then
t—1
20 Y (1= 2n0)F = 1= (1—2p\),
k=0
which converges to 1 as t — oco.
» So, when 27\, < 1, we have w® — @ as t — oc.
» Rate of convergence is geometric, i.e., “exponentially fast
convergence”
» Algorithmic inductive bias!
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Postscript

» There are many optimization algorithms for convex
optimization
» Gradient descent, Newton's method, BFGS, coordinate descent,
mirror descent, etc.
» Stochastic variants thereof
» Many also usable even when objective function is non-convex
» Typically just converge to a local minimizer or stationary point
» Can also handle constraints on the optimization variable
» E.g., want coordinates of w to lie in a specific range

» The algorithmic inductive bias not always well-understood, but
it is there!
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