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Regression III: Kernels



Outline

I Dual form of ridge regression
I Examples of kernel trick
I Kernel methods
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Linear algebraic identity

I Let A = 1√
n


← xT

1 →
...

← xT
n →

 ∈ Rn×d and b = 1√
n


y1
...
yn

 ∈ Rn

I Linear algebraic identity: for any A ∈ Rn×d and any λ > 0,

(ATA+ λI︸ ︷︷ ︸
d×d

)−1AT = AT(AAT + λI︸ ︷︷ ︸
n×n

)−1.

I Check: multiply both sides by ATA+ λI and “factor”.
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Alternative (dual) form for ridge regression (1)

I Implications for ridge regression

ŵ = AT (AAT + λI)−1b︸ ︷︷ ︸
=:
√
nα̂

=
√
nATα̂ =

n∑
i=1

α̂ixi.

I Matrix AAT = 1
nK, where K ∈ Rn×n is the Gram matrix

Ki,j = xT
i xj .

I Prediction with ŵ on new point x:

xTŵ =
n∑
i=1

α̂i · xTxi
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Alternative (dual) form for ridge regression (2)

I Therefore, can “represent” predictor via data points x1, . . . , xn
and α̂.
I Similar to nearest neighbor classifier, except also have α̂
I To get α̂: solve linear system involving K (and not A directly)
I To make prediction on x: iterate through the xi to compute

inner products with x; take appropriate weighted sum of results
I When is this a good idea?
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Quadratic expansion

I Suppose we want to do feature expansion to get all quadratic
terms in ϕ(x)

ϕ(x) = (1,
√

2x1, . . . ,
√

2xd︸ ︷︷ ︸
linear terms

, x2
1, . . . , x

2
d︸ ︷︷ ︸

squared terms

,
√

2x1x2, . . . ,
√

2x1xd, . . . ,
√

2xd−1xd︸ ︷︷ ︸
cross terms

)

I This feature expansion has 1 + 2d+
(d

2
)

= Θ(d2) terms
I Explicitly computing ϕ(x), ϕ(x′), and then ϕ(x)Tϕ(x′) would

take Θ(d2) time.

I “Kernel trick”: can compute ϕ(x)Tϕ(x′) in O(d) time:

ϕ(x)Tϕ(x′) = (1 + xTx′)2.

I Similar trick for cubic expansion, quartic expansion, etc.
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Gaussian kernel

I For any σ > 0, there is an infinite-dimensional feature
expansion ϕ : Rd → R∞ such that

ϕ(x)Tϕ(x′) = exp
(
−‖x− x

′‖22
2σ2

)
,

which can be computed in O(d) time.
I Called Gaussian kernel or Radial Basis Function (RBF) kernel

(with bandwidth σ).

I Feature expansion for d = 1 and σ = 1 case:

ϕ(x) = e−x
2/2
(

1, x, x
2
√

2!
,
x3
√

3!
, . . .

)
.
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Kernels

I A positive definite kernel k : X × X → R is a symmetric
function satisfying the following property: For any n, and any
x1, . . . , xn ∈ X , the n× n matrix whose (i, j)-th entry is
k(xi, xj) is positive semidefinite.

I Theorem: For any positive definite kernel k, there exists a
feature map ϕ : X → H such that ϕ(x)Tϕ(x′) = k(x, x′) for
all x, x′ ∈ X .
I Here, H is a special kind of inner product space called the

Reproducing Kernel Hilbert Space (RKHS) corresponding to k.

I Algorithmically, we don’t have to worry about what ϕ is.
Instead, just use k.
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Kernel ridge regression (1)

I Training data (x1, y1), . . . , (xn, yn) ∈ X × R
I Ridge regression with feature map ϕ: minimize

1
n

n∑
i=1

(ϕ(xi)Tw − yi)2 + λ‖w‖22

I Compute the n× n kernel matrix K where

Ki,j = k(xi, xj).

I Letting w =
∑n
i=1 αiϕ(xi) for α = (α1, . . . , αn), ridge

regression objective is equivalent to

1
n
‖Kα− y‖22 + λαTKα

where y = (y1, . . . , yn) ∈ Rn.
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Kernel ridge regression (2)

I Minimizer wrt α is solution α̂ to linear system of equations

(K + nλI)α = y.

I Return predictor that is represented by α̂ ∈ Rn and x1, . . . , xn
I To make prediction on new x ∈ X : output

n∑
i=1

α̂i · k(x, xi).

I Inductive bias:

|ŵTϕ(x)− ŵTϕ(x′)| ≤ ‖ŵ‖2 · ‖ϕ(x)− ϕ(x′)‖2
=
√
α̂TKα̂ · ‖ϕ(x)− ϕ(x′)‖2
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Kernel methods

I Many methods / algorithms can be “kernelized” into
kernel methods
I E.g., nearest neighbor, PCA, SVM, gradient descent, . . .

I “Spectral regularization” with kernels: solve g(K/n)α = y/n
for α.
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Figure 1: Polynomial kernel with Kernel Ridge Regression and Kernel PCR
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Figure 2: RBF kernel with Kernel Ridge Regression and Kernel PCR
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Figure 3: RBF kernel with Kernel PCR
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New kernels from old kernels

I Suppose k1 and k2 are positive definite kernel functions.
I Is k(x, x′) = k1(x, x′) + k2(x, x′) a positive definite kernel

function?
I Is k(x, x′) = a k1(x, x′) (for a ≥ 0) a positive definite kernel

function?
I Is k(x, x′) = k1(x, x′) k2(x, x′) a positive definite kernel

function?

14 / 15



Postscript

I Problem with kernel methods when n is large
I Kernel matrix K is of size n2

I Time for prediction generally ∝ n
I Some possible solutions:

I Nystrom approximations
I Find other ways to make α̂ sparse
I Random Fourier features
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