Machine learning lecture slides

COMS 4771 Fall 2020

Regression III: Kernels

Outline

- Dual form of ridge regression
- Examples of kernel trick
- Kernel methods

Linear algebraic identity

- Let $A=\frac{1}{\sqrt{n}}\left[\begin{array}{ccc}\leftarrow & x_{1}^{\top} & \rightarrow \\ & \vdots & \\ \leftarrow & x_{n}^{\top} & \rightarrow\end{array}\right] \in \mathbb{R}^{n \times d}$ and $b=\frac{1}{\sqrt{n}}\left[\begin{array}{c}y_{1} \\ \vdots \\ y_{n}\end{array}\right] \in \mathbb{R}^{n}$
- Linear algebraic identity: for any $A \in \mathbb{R}^{n \times d}$ and any $\lambda>0$,

$$
(\underbrace{A^{\top} A+\lambda I}_{d \times d})^{-1} A^{\top}=A^{\top}(\underbrace{A A^{\top}+\lambda I}_{n \times n})^{-1}
$$

- Check: multiply both sides by $A^{\top} A+\lambda I$ and "factor".

Alternative (dual) form for ridge regression (1)

- Implications for ridge regression

$$
\hat{w}=A^{\top} \underbrace{\left(A A^{\top}+\lambda I\right)^{-1} b}_{=: \sqrt{n} \hat{\alpha}}=\sqrt{n} A^{\top} \hat{\alpha}=\sum_{i=1}^{n} \hat{\alpha}_{i} x_{i}
$$

- Matrix $A A^{\top}=\frac{1}{n} K$, where $K \in \mathbb{R}^{n \times n}$ is the Gram matrix

$$
K_{i, j}=x_{i}^{\top} x_{j}
$$

- Prediction with \hat{w} on new point x :

$$
x^{\top} \hat{w}=\sum_{i=1}^{n} \hat{\alpha}_{i} \cdot x^{\top} x_{i}
$$

Alternative (dual) form for ridge regression (2)

- Therefore, can "represent" predictor via data points x_{1}, \ldots, x_{n} and $\hat{\alpha}$.
- Similar to nearest neighbor classifier, except also have $\hat{\alpha}$
- To get $\hat{\alpha}$: solve linear system involving K (and not A directly)
- To make prediction on x : iterate through the x_{i} to compute inner products with x; take appropriate weighted sum of results
- When is this a good idea?

Quadratic expansion

- Suppose we want to do feature expansion to get all quadratic terms in $\varphi(x)$

$$
\varphi(x)=(1, \underbrace{\sqrt{2} x_{1}, \ldots, \sqrt{2} x_{d}}_{\text {linear terms }}, \underbrace{x_{1}^{2}, \ldots, x_{d}^{2}}_{\text {squared terms }}, \underbrace{\sqrt{2} x_{1} x_{2}, \ldots, \sqrt{2} x_{1} x_{d}, \ldots, \downarrow}_{\text {cross terms }}
$$

- This feature expansion has $1+2 d+\binom{d}{2}=\Theta\left(d^{2}\right)$ terms
- Explicitly computing $\varphi(x), \varphi\left(x^{\prime}\right)$, and then $\varphi(x)^{\top} \varphi\left(x^{\prime}\right)$ would take $\Theta\left(d^{2}\right)$ time.
- "Kernel trick": can compute $\varphi(x)^{\top} \varphi\left(x^{\prime}\right)$ in $O(d)$ time:

$$
\varphi(x)^{\top} \varphi\left(x^{\prime}\right)=\left(1+x^{\top} x^{\prime}\right)^{2}
$$

- Similar trick for cubic expansion, quartic expansion, etc.

Gaussian kernel

- For any $\sigma>0$, there is an infinite-dimensional feature expansion $\varphi: \mathbb{R}^{d} \rightarrow \mathbb{R}^{\infty}$ such that

$$
\varphi(x)^{\top} \varphi\left(x^{\prime}\right)=\exp \left(-\frac{\left\|x-x^{\prime}\right\|_{2}^{2}}{2 \sigma^{2}}\right)
$$

which can be computed in $O(d)$ time.

- Called Gaussian kernel or Radial Basis Function (RBF) kernel (with bandwidth σ).
- Feature expansion for $d=1$ and $\sigma=1$ case:

$$
\varphi(x)=e^{-x^{2} / 2}\left(1, x, \frac{x^{2}}{\sqrt{2!}}, \frac{x^{3}}{\sqrt{3!}}, \ldots\right) .
$$

Kernels

- A positive definite kernel $\mathrm{k}: \mathcal{X} \times \mathcal{X} \rightarrow \mathbb{R}$ is a symmetric function satisfying the following property: For any n, and any $x_{1}, \ldots, x_{n} \in \mathcal{X}$, the $n \times n$ matrix whose (i, j)-th entry is $\mathrm{k}\left(x_{i}, x_{j}\right)$ is positive semidefinite.
- Theorem: For any positive definite kernel k , there exists a feature map $\varphi: \mathcal{X} \rightarrow H$ such that $\varphi(x)^{\top} \varphi\left(x^{\prime}\right)=\mathrm{k}\left(x, x^{\prime}\right)$ for all $x, x^{\prime} \in \mathcal{X}$.
- Here, H is a special kind of inner product space called the Reproducing Kernel Hilbert Space (RKHS) corresponding to k.
- Algorithmically, we don't have to worry about what φ is. Instead, just use k.

Kernel ridge regression (1)

- Training data $\left(x_{1}, y_{1}\right), \ldots,\left(x_{n}, y_{n}\right) \in \mathcal{X} \times \mathbb{R}$
- Ridge regression with feature map φ : minimize

$$
\frac{1}{n} \sum_{i=1}^{n}\left(\varphi\left(x_{i}\right)^{\top} w-y_{i}\right)^{2}+\lambda\|w\|_{2}^{2}
$$

- Compute the $n \times n$ kernel matrix K where

$$
K_{i, j}=\mathrm{k}\left(x_{i}, x_{j}\right)
$$

- Letting $w=\sum_{i=1}^{n} \alpha_{i} \varphi\left(x_{i}\right)$ for $\alpha=\left(\alpha_{1}, \ldots, \alpha_{n}\right)$, ridge regression objective is equivalent to

$$
\frac{1}{n}\|K \alpha-y\|_{2}^{2}+\lambda \alpha^{\top} K \alpha
$$

where $y=\left(y_{1}, \ldots, y_{n}\right) \in \mathbb{R}^{n}$.

Kernel ridge regression (2)

- Minimizer wrt α is solution $\hat{\alpha}$ to linear system of equations

$$
(K+n \lambda I) \alpha=y
$$

- Return predictor that is represented by $\hat{\alpha} \in \mathbb{R}^{n}$ and x_{1}, \ldots, x_{n}
- To make prediction on new $x \in \mathcal{X}$: output

$$
\sum_{i=1}^{n} \hat{\alpha}_{i} \cdot \mathrm{k}\left(x, x_{i}\right)
$$

- Inductive bias:

$$
\begin{aligned}
\left|\hat{w}^{\top} \varphi(x)-\hat{w}^{\top} \varphi\left(x^{\prime}\right)\right| & \leq\|\hat{w}\|_{2} \cdot\left\|\varphi(x)-\varphi\left(x^{\prime}\right)\right\|_{2} \\
& =\sqrt{\hat{\alpha}^{\top} K \hat{\alpha}} \cdot\left\|\varphi(x)-\varphi\left(x^{\prime}\right)\right\|_{2}
\end{aligned}
$$

Kernel methods

- Many methods / algorithms can be "kernelized" into kernel methods
- E.g., nearest neighbor, PCA, SVM, gradient descent, ...
- "Spectral regularization" with kernels: solve $g(K / n) \alpha=y / n$ for α.

Figure 1: Polynomial kernel with Kernel Ridge Regression and Kernel PCR

Figure 2: RBF kernel with Kernel Ridge Regression and Kernel PCR

Figure 3: RBF kernel with Kernel PCR

New kernels from old kernels

- Suppose k_{1} and k_{2} are positive definite kernel functions.
- Is $\mathrm{k}\left(x, x^{\prime}\right)=\mathrm{k}_{1}\left(x, x^{\prime}\right)+\mathrm{k}_{2}\left(x, x^{\prime}\right)$ a positive definite kernel function?
- Is $\mathrm{k}\left(x, x^{\prime}\right)=a \mathrm{k}_{1}\left(x, x^{\prime}\right)$ (for $a \geq 0$) a positive definite kernel function?
- Is $\mathrm{k}\left(x, x^{\prime}\right)=\mathrm{k}_{1}\left(x, x^{\prime}\right) \mathrm{k}_{2}\left(x, x^{\prime}\right)$ a positive definite kernel function?

Postscript

- Problem with kernel methods when n is large
- Kernel matrix K is of size n^{2}
- Time for prediction generally $\propto n$
- Some possible solutions:
- Nystrom approximations
- Find other ways to make $\hat{\alpha}$ sparse
- Random Fourier features

