Machine learning lecture slides

COMS 4771 Fall 2020

Multivariate Gaussians and PCA

Outline

- Multivariate Gaussians
- Eigendecompositions and covariance matrices
- Principal component analysis
- Principal component regression and spectral regularization
- Singular value decomposition
- Examples: topic modeling and matrix completion

Multivariate Gaussians: Isotropic Gaussians

- Start with $X=\left(X_{1}, \ldots, X_{d}\right) \sim \mathrm{N}(0, I)$, i.e., X_{1}, \ldots, X_{d} are iid $\mathrm{N}(0,1)$ random variables.
- Probability density function is product of (univariate) Gaussian densities
- $\mathbb{E}\left(X_{i}\right)=0$
- $\operatorname{var}\left(X_{i}\right)=\operatorname{cov}\left(X_{i}, X_{i}\right)=1, \operatorname{cov}\left(X_{i}, X_{j}\right)=0$ for $i \neq j$
- Arrange in mean vector $\mathbb{E}(X)=0$, covariance matrix $\operatorname{cov}(X)=I$

Figure 1: Density function for isotropic Gaussian in \mathbb{R}^{2}

Figure 2: Density function level sets for isotropic Gaussian in \mathbb{R}^{2}

Affine transformations of random vectors

- Start with any random vector Z, then apply linear transformation, followed by translation
- $X:=M Z+\mu$, for $M \in \mathbb{R}^{k \times d}$ and $\mu \in \mathbb{R}^{k}$
- Fact: $\mathbb{E}(X)=M \mathbb{E}(Z)+\mu, \operatorname{cov}(X)=M \operatorname{cov}(Z) M^{\top}$
- E.g., let $u \in \mathbb{R}^{d}$ be a unit vector $\left(\|u\|_{2}=1\right)$, and $X:=u^{\top} Z$ (projection of X along direction u). Then $\mathbb{E}(X)=u^{\top} \mathbb{E}(Z)$, and $\operatorname{var}(X)=u^{\top} \operatorname{cov}(Z) u$.
- Note: These transformations work for random vectors with any distribution, not just Gaussian distributions.
- However, it is convenient to illustrate the effect of these transformations on Gaussian distributions, since the "shape" of the Gaussian pdf is easy to understand.

Multivariate Gaussians: General Gaussians

- If $Z \sim \mathrm{~N}(0, I)$ and $X=M Z+\mu$, we have $\mathbb{E}(X)=\mu$ and $\operatorname{cov}(X)=M M^{\top}$
- Assume $M \in \mathbb{R}^{d \times d}$ is invertible (else we get a degenerate Gaussian distribution).
- We say $X \sim \mathrm{~N}\left(\mu, M M^{\top}\right)$
- Density function given by

$$
p(x)=\frac{1}{(2 \pi)^{d / 2}\left|M M^{\top}\right|^{1 / 2}} \exp \left(-\frac{1}{2}(x-\mu)^{\top}\left(M M^{\top}\right)^{-1}(x-\mu)\right) .
$$

- Note: every non-singular covariance matrix Σ can be written as $M M^{\top}$ for some non-singular matrix M. (We'll see why soon.)

Figure 3: Density function level sets for anisotropic Gaussian in \mathbb{R}^{2}

Inference with multivariate Gaussians (2)

- Bivariate case: $\left(X_{1}, X_{2}\right) \sim \mathrm{N}(\mu, \Sigma)$ in \mathbb{R}^{2}

$$
\mu=\left[\begin{array}{l}
\mu_{1} \\
\mu_{2}
\end{array}\right], \quad \Sigma=\left[\begin{array}{ll}
\Sigma_{1,1} & \Sigma_{1,2} \\
\Sigma_{2,1} & \Sigma_{2,2}
\end{array}\right]
$$

- What is the distribution of X_{2} ?
- $\mathrm{N}\left(\mu_{2}, \Sigma_{2,2}\right)$
- What is the distribution of $X_{2} \mid X_{1}=x_{1}$?
- Miracle 1: it is a Gaussian distribution
- Miracle 2: mean provided by linear prediction of X_{2} from X_{1} with smallest MSE
- Miracle 3: variance doesn't depend on x_{1}

Inference with multivariate Gaussians (2)

- What is the distribution of $X_{2} \mid X_{1}=x_{1}$?
- Miracle 1: it is a Gaussian distribution
- Miracle 2: mean provided by linear prediction of X_{2} from X_{1} with smallest MSE
- Miracle 3: variance doesn't depend on x_{1}
- OLS with X_{1} as input variable and X_{2} as output variable:

$$
x_{1} \mapsto \hat{m} x_{1}+\hat{\theta}
$$

where

$$
\begin{aligned}
\hat{m} & =\frac{\operatorname{cov}\left(X_{1}, X_{2}\right)}{\operatorname{var}\left(X_{1}\right)}=\frac{\Sigma_{1,2}}{\Sigma_{1,1}} \\
\hat{\theta} & =\mathbb{E}\left(X_{2}\right)-\hat{m} \mathbb{E}\left(X_{1}\right)=\mu_{2}-\hat{m} \mu_{1}
\end{aligned}
$$

- Therefore:

$$
\begin{aligned}
\mathbb{E}\left[X_{2} \mid X_{1}=x_{1}\right] & =\hat{m} x_{1}+\hat{\theta} \\
& =\mu_{2}+\hat{m}\left(x_{1}-\mu_{1}\right) \\
& =\mu_{2}+\frac{\Sigma_{1,2}}{\Sigma_{1,1}}\left(x_{1}-\mu_{1}\right)
\end{aligned}
$$

Inference with multivariate Gaussians (3)

- What is the distribution of $X_{2} \mid X_{1}=x_{1}$?
- Miracle 1: it is a Gaussian distribution
- Miracle 2: mean provided by linear prediction of X_{2} from X_{1} with smallest MSE
- Miracle 3: variance doesn't depend on x_{1}

$$
\begin{aligned}
\operatorname{var}\left(X_{2} \mid X_{1}=x_{1}\right) & =\mathbb{E}\left[\operatorname{var}\left(X_{2} \mid X_{1}\right)\right] \\
& =\operatorname{var}\left(X_{2}\right)-\operatorname{var}\left(\mathbb{E}\left[X_{2} \mid X_{1}\right]\right) \\
& =\Sigma_{2,2}-\operatorname{var}\left(\hat{m} X_{1}+\hat{\theta}\right) \\
& =\Sigma_{2,2}-\hat{m}^{2} \operatorname{var}\left(X_{1}\right) \\
& =\Sigma_{2,2}-\frac{\Sigma_{1,2}^{2}}{\Sigma_{1,1}^{2}} \Sigma_{1,1} \\
& =\Sigma_{2,2}-\frac{\Sigma_{1,2}^{2}}{\Sigma_{1,1}}
\end{aligned}
$$

Inference with multivariate Gaussians (4)

- Beyond bivariate Gaussians: same as above, but just writing things properly using matrix notations

$$
\begin{aligned}
\mathbb{E}\left[X_{2} \mid X_{1}=x_{1}\right] & =\mu_{2}+\Sigma_{2,1} \Sigma_{1,1}^{-1}\left(x_{1}-\mu_{1}\right) \\
\operatorname{cov}\left(X_{2} \mid X_{1}=x_{1}\right) & =\Sigma_{2,2}-\Sigma_{2,1} \Sigma_{1,1}^{-1} \Sigma_{1,2}
\end{aligned}
$$

Eigendecomposition (1)

- Every symmetric matrix $M \in \mathbb{R}^{d \times d}$ has d real eigenvalues, which we arrange as

$$
\lambda_{1} \geq \cdots \geq \lambda_{d}
$$

- Can choose corresponding orthonormal eigenvectors

$$
v_{1}, \ldots, v_{d} \in \mathbb{R}^{d}
$$

- This means

$$
M v_{i}=\lambda_{i} v_{i}
$$

for each $i=1, \ldots, d$, and

$$
v_{i}^{\top} v_{j}=\mathbf{1}_{\{i=j\}}
$$

Eigendecomposition (2)

- Arrange v_{1}, \ldots, v_{d} in an orthogonal matrix $V:=\left[v_{1}|\cdots| v_{d}\right]$
- $V^{\top} V=I$ and $V V^{\top}=\sum_{i=1}^{d} v_{i} v_{i}^{\top}=I$
- Therefore,

$$
\begin{aligned}
M & =M V V^{\top} \\
& =\sum_{i=1}^{d} M v_{i} v_{i}^{\top} \\
& =\sum_{i=1}^{d} \lambda_{i} v_{i} v_{i}^{\top}
\end{aligned}
$$

- This is our preferred way to express the eigendecomposition
- Also called spectral decomposition
- Can also write $M=V \Lambda V^{\top}$, where $\Lambda=\operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{d}\right)$
- The matrix V diagonalizes M :

$$
V^{\top} M V=\Lambda
$$

Covariance matrix (1)

- $A \in \mathbb{R}^{n \times d}$ is data matrix
- $\Sigma:=A^{\top} A=\frac{1}{n} \sum_{i=1}^{n} x_{i} x_{i}^{\top}$ is (empirical) second-moment matrix
- If $\frac{1}{n} \sum_{i=1}^{n} x_{i}=0$ (data are "centered"), this is the (empirical) covariance matrix
- For purpose of exposition, just say/write "(co)variance" even though "second-moment" is technically correct
- For any unit vector $u \in \mathbb{R}^{d}$,

$$
u^{\top} \Sigma u=\frac{1}{n} \sum_{i=1}^{n}\left(u^{\top} x_{i}\right)^{2}
$$

is (empirical) variance of data along direction u

Covariance matrix (2)

- Note: some pixels in OCR data have very little (or zero!) variation
- These are "coordinate directions" (e.g., $u=(1,0, \ldots, 0))$
- Probably can/should ignore these!

Figure 4: Which pixels are likely to have very little variance?

Top eigenvector

- Σ is symmetric, so can write eigendecomposition

$$
\Sigma=\sum_{i=1}^{d} \lambda_{i} v_{i} v_{i}^{\top}
$$

- In which direction is variance maximized?
- Answer: v_{1}, corresponding to largest eigenvalue λ_{1}
- Called the top eigenvector
- This follows from the following characterization of v_{1} :

$$
v_{1}^{\top} \Sigma v_{1}=\max _{u \in \mathbb{R}^{d}:\|u\|_{2}=1} u^{\top} \Sigma u=\lambda_{1}
$$

Figure 5: What is the direction of the top eigenvector for the covariance of this Gaussian?

Top k eigenvectors

- What about among directions orthogonal to v_{1} ?
- Answer: v_{2}, corresponding to second largest eigenvalue λ_{2}
- (Note: all eigenvalues of Σ are non-negative!)
- For any $k, V_{k}:=\left[v_{1}|\cdots| v_{k}\right]$ satisfies

$$
\sum_{i=1}^{k} v_{i}^{\top} \Sigma v_{i}=\operatorname{tr}\left(V_{k}^{\top} \Sigma V_{k}\right)=\max _{U \in \mathbb{R}^{d \times k}: U^{\top} U=I} \operatorname{tr}\left(U^{\top} \Sigma U\right)=\sum_{i=1}^{k} \lambda_{i}
$$

(the top k eigenvectors)

Principal component analysis

- k-dimensional principal components analysis (PCA) mapping:

$$
\varphi(x)=\left(x^{\top} v_{1}, \ldots, x^{\top} v_{k}\right)=V_{k}^{\top} x \in \mathbb{R}^{k}
$$

where $V_{k}=\left[v_{1}|\cdots| v_{k}\right] \in \mathbb{R}^{d \times k}$

- (Only really makes sense when $\lambda_{k}>0$.)
- This is a form of dimensionality reduction when $k<d$.

Figure 6: Fraction of residual variance from projections of varying dimension

Covariance of data upon PCA mapping

- Covariance of data upon PCA mapping:

$$
\frac{1}{n} \sum_{i=1}^{n} \varphi\left(x_{i}\right) \varphi\left(x_{i}\right)^{\top}=\frac{1}{n} \sum_{i=1}^{n} V_{k}^{\top} x_{i} x_{i}^{\top} V_{k}=V_{k}^{\top} \Sigma V_{k}=\Lambda_{k}
$$

where Λ_{k} is diagonal matrix with $\lambda_{1}, \ldots, \lambda_{k}$ along diagonal.

- In particular, coordinates in $\varphi(x)$-representation are uncorrelated.

PCA and linear regression

- Use k-dimensional PCA mapping $\varphi(x)=V_{k}^{\top} x$ with ordinary least squares
- (Assume rank of A is at least k, so $A^{\top} A$ has $\lambda_{k}>0$)
- Data matrix is

$$
\frac{1}{\sqrt{n}}\left[\begin{array}{ccc}
\leftarrow & \varphi\left(x_{1}\right)^{\top} & \rightarrow \\
\vdots & \\
\leftarrow & \varphi\left(x_{n}\right)^{\top} & \rightarrow
\end{array}\right]=\frac{1}{\sqrt{n}}\left[\begin{array}{ccc}
\leftarrow & x_{1}^{\top} V_{k} & \rightarrow \\
\vdots & \\
\leftarrow & x_{n}^{\top} V_{k} & \rightarrow
\end{array}\right]=A V_{k} \in \mathbb{R}^{n \times k}
$$

- Therefore, OLS solution is

$$
\begin{aligned}
\hat{\beta} & =\left(V_{k}^{\top} A^{\top} A V_{k}\right)^{-1}\left(A V_{k}\right)^{\top} b \\
& =\Lambda_{k}^{-1} V_{k}^{\top} A^{\top} b
\end{aligned}
$$

(Note: here $\hat{\beta} \in \mathbb{R}^{k}$.)

Principal component regression

- Use $\hat{\beta}=\Lambda_{k}^{-1} V_{k}^{\top} A^{\top} b$ to predict on new $x \in \mathbb{R}^{d}$:

$$
\begin{aligned}
\varphi(x)^{\top} \hat{\beta} & =\left(V_{k}^{\top} x\right)^{\top} \Lambda_{k}^{-1} V_{k}^{\top} A^{\top} b \\
& =x^{\top}\left(V_{k} \Lambda_{k}^{-1} V_{k}^{\top}\right)\left(A^{\top} b\right)
\end{aligned}
$$

- So "effective" weight vector (that acts directly on x rather than $\varphi(x)$) is given by

$$
\hat{w}:=\left(V_{k} \Lambda_{k}^{-1} V_{k}^{\top}\right)\left(A^{\top} b\right)
$$

- This is called principal component regression ($P C R$) (here, k is hyperparameter)
- Alternative hyper-parameterization: $\lambda>0$; same as before but using the largest k such that $\lambda_{k} \geq \lambda$.

Spectral regularization

- PCR and ridge regression are examples of spectral regularization.
- For a function $g: \mathbb{R} \rightarrow \mathbb{R}$, write $g(M)$ to mean

$$
g(M)=\sum_{i=1}^{d} g\left(\lambda_{i}\right) v_{i} v_{i}^{\top}
$$

where M has eigendecomposition $M=\sum_{i=1}^{d} \lambda_{i} v_{i} v_{i}^{\top}$.

- I.e., g is applied to eigenvalues of M
- Generalizes effect of polynomials: e.g., $g(z)=z^{2}$

$$
M^{2}=\left(V \Lambda V^{\top}\right)\left(V \Lambda V^{\top}\right)=V \Lambda^{2} V^{\top}
$$

- Claim: Can write each of PCR and ridge regression as

$$
\hat{w}=g\left(A^{\top} A\right) A^{\top} b
$$

for appropriate function g (depending on λ).

Comparing ridge regression and PCR

- $\hat{w}=g\left(A^{\top} A\right) A^{\top} b$
- Ridge regression (with parameter λ): $g(z)=\frac{1}{z+\lambda}$
- PCR (with parameter λ): $g(z)=\mathbf{1}_{\{z \geq \lambda\}} \cdot \frac{1}{z}$
- Interpretation:
- PCR uses directions with sufficient variability; ignores the rest
- Ridge artificially inflates the variance in all directions

Figure 7: Comparison of ridge regression and PCR

Matrix factorization

- Let $A=\left[\begin{array}{ccc}\leftarrow & x_{1}^{\top} & \rightarrow \\ & \vdots & \\ \leftarrow & x_{n}^{\top} & \rightarrow\end{array}\right] \in \mathbb{R}^{n \times d}$ (forget the $1 / \sqrt{n}$ scaling)
- Try to approximate A with $B C$, where $B \in \mathbb{R}^{n \times k}$ and $C \in \mathbb{R}^{k \times d}$, to minimize $\|A-B C\|_{F}^{2}$.
- Here, $\|\cdot\|_{F}$ is a matrix norm called Frobenius norm, which treats the $n \times d$ matrix as a vector in $n d$-dimensional Euclidean space
- Think of B as the encodings of the data in A
- "Dimension reduction" when $k<d$
- Theorem (Schmidt, 1907; Eckart-Young, 1936): Optimal solution is given by truncating the singular value decomposition (SVD) of A

Singular value decomposition

- Every matrix $A \in \mathbb{R}^{n \times d}$ —say, with rank r —can be written as

$$
A=\sum_{i=1}^{r} \sigma_{i} u_{i} v_{i}^{\top}
$$

where

- $\sigma_{1} \geq \cdots \geq \sigma_{r}>0$ (singular values)
- $u_{1}, \ldots, u_{r} \in \mathbb{R}^{n}$ (orthonormal left singular vectors)
- $v_{1}, \ldots, v_{r} \in \mathbb{R}^{d}$ (orthonormal right singular vectors)
- Can also write as

$$
A=U S V^{\top}
$$

where

- $U=\left[u_{1}|\cdots| u_{r}\right] \in \mathbb{R}^{n \times r}$, satisfies $U^{\top} U=I$
- $S=\operatorname{diag}\left(\sigma_{1}, \ldots, \sigma_{r}\right) \in \mathbb{R}^{r \times r}$
- $V=\left[v_{1}|\cdots| v_{r}\right] \in \mathbb{R}^{d \times r}$, satisfies $V^{\top} V=I$

Truncated SVD

- Let A have SVD $A=\sum_{i=1}^{r} \sigma_{i} u_{i} v_{i}^{\top}$ (rank of A is r)
- Truncate at rank k (for any $k \leq r$): rank- k SVD

$$
A_{k}:=\sum_{i=1}^{k} \sigma_{i} u_{i} v_{i}^{\top}
$$

- Can write as $A_{k}:=U_{k} S_{k} V_{k}^{\top}$, where
- $U_{k}=\left[u_{1}|\cdots| u_{k}\right] \in \mathbb{R}^{n \times k}$, satisfies $U^{\top} U=I$
- $S_{k}=\operatorname{diag}\left(\sigma_{1}, \ldots, \sigma_{k}\right) \in \mathbb{R}^{k \times k}$
- $V_{k}=\left[v_{1}|\cdots| v_{k}\right] \in \mathbb{R}^{d \times r}$, satisfies $V^{\top} V=I$
- Theorem (Schmidt/Eckart-Young):

$$
\left\|A-A_{k}\right\|_{F}^{2}=\min _{M: \operatorname{rank}(M)=k}\|A-M\|_{F}^{2}=\sum_{i=k+1}^{r} \sigma_{i}^{2}
$$

Encoder/decoder interpretation (1)

- Encoder: $x \mapsto \varphi(x)=V_{k}^{\top} x \in \mathbb{R}^{k}$
- Encoding rows of $A: A V_{k}=U_{k} S_{k}$
- Decoder: $z \mapsto V_{k} z \in \mathbb{R}^{d}$
- Decoding rows of $U_{k} S_{k}: U_{k} S_{k} V_{k}^{\top}=A_{k}$
- Same as k-dimensional PCA mapping!
- $A^{\top} A=V S^{2} V^{\top}$, so eigenvectors of $A^{\top} A$ are right singular vectors of A, non-zero eigenvalues are squares of the singular values
- PCA/SVD finds k-dimensional subspace of smallest sum of squared distances to data points.

Encoder/decoder interpretation (2)

- Example: OCR data, compare original image to decoding of k-dimensional PCA encoding $(k \in\{1,10,50,200\})$

Figure 9: PCA compression of MNIST digit

Application: Topic modeling (1)

- Start with n documents, represent using "bag-of-words" count vectors
- Arrange in matrix $A \in \mathbb{R}^{n \times d}$, where d is vocabulary size

	aardvark	abacus	abalone	\cdots
doc 1	3	0	0	\cdots
doc 2	7	0	4	\cdots
doc 3	2	4	0	\cdots
\vdots	\vdots	\vdots	\vdots	

Application: Topic modeling (2)

- Rank k SVD provides an approximate factorization

$$
A \approx B C
$$

where $B \in \mathbb{R}^{n \times k}$ and $C \in \mathbb{R}^{k \times d}$

- This use of SVD is called Latent Semantic Analysis (LSA)
- Interpret rows of C as "topics"
- $B_{i, t}$ is "weight" of document i on topic t
- If rows of C were probability distributions, could interpret as $C_{t, w}$ as probability that word w appears in topic t

Application: Matrix completion (1)

- Start with ratings of movies given by users
- Arrange in a matrix $A \in \mathbb{R}^{n \times d}$, where $A_{i, j}$ is rating given by user i for movie j.
- Netflix: $n=480000, d=18000$; on average, each user rates 200 movies
- Most entries of A are unknown
- Idea: Approximate A with low-rank matrix, i.e., find

$$
B=\left[\begin{array}{ccc}
\leftarrow & b_{1}^{\top} & \rightarrow \\
& \vdots & \\
\leftarrow & b_{n}^{\top} & \rightarrow
\end{array}\right] \in \mathbb{R}^{n \times k}, \quad C=\left[\begin{array}{ccc}
\uparrow & & \uparrow \\
c_{1} & \cdots & c_{d} \\
\downarrow & & \downarrow
\end{array}\right] \in \mathbb{R}^{k \times d}
$$

with goal of minimizing $\|A-B C\|_{F}^{2}$

- Note: If all entries of A were observed, we could do this with truncated SVD.

Application: Matrix completion (2)

- Need to find a low-rank approximation without all of A : (low-rank) matrix completion
- Lots of ways to do this
- Popular way (used in Netflix competition): based on "stochastic gradient descent" (discussed later)
- Another way: fill in missing entries with plug-in estimates (based on a statistical model), then compute truncated SVD as usual

Feature representations from matrix completion

- MovieLens data set ($n=6040$ users, $d=3952$ movies, $|\Omega|=800000$ ratings)
- Fit B and C by using a standard matrix completion method (based on SGD, discussed later)
- Are $c_{1}, \ldots, c_{d} \in \mathbb{R}^{k}$ useful feature vectors for movies?
- Some nearest-neighbor pairs $\left(c_{j}, \mathrm{NN}\left(c_{j}\right)\right)$:
- Toy Story (1995), Toy Story 2 (1999)
- Sense and Sensibility (1995), Emma (1996)
- Heat (1995), Carlito's Way (1993)
- The Crow (1994), Blade (1998)
- Forrest Gump (1994), Dances with Wolves (1990)
- Mrs. Doubtfire (1993), The Bodyguard (1992)

