Machine learning lecture slides

COMS 4771 Fall 2020

Multivariate Gaussians and PCA

Outline

- Multivariate Gaussians
- Eigendecompositions and covariance matrices
- Principal component analysis
- Principal component regression and spectral regularization
- Singular value decomposition
- Examples: topic modeling and matrix completion

Multivariate Gaussians: Isotropic Gaussians

- Start with X = (X₁,...,X_d) ∼ N(0, I), i.e., X₁,...,X_d are iid N(0,1) random variables.
 - Probability density function is product of (univariate) Gaussian densities
 - $\blacktriangleright \mathbb{E}(X_i) = 0$
 - $\operatorname{var}(X_i) = \operatorname{cov}(X_i, X_i) = 1$, $\operatorname{cov}(X_i, X_j) = 0$ for $i \neq j$
 - ► Arrange in mean vector E(X) = 0, covariance matrix cov(X) = I

Figure 1: Density function for isotropic Gaussian in \mathbb{R}^2

Figure 2: Density function level sets for isotropic Gaussian in \mathbb{R}^2

Affine transformations of random vectors

- Start with any random vector Z, then apply linear transformation, followed by translation
 - $\blacktriangleright \ X:=MZ+\mu \text{, for } M\in \mathbb{R}^{k\times d} \text{ and } \mu\in \mathbb{R}^k$
 - ► Fact: $\mathbb{E}(X) = M\mathbb{E}(Z) + \mu$, $\operatorname{cov}(X) = M \operatorname{cov}(Z)M^{\mathsf{T}}$
 - ▶ E.g., let $u \in \mathbb{R}^d$ be a unit vector ($||u||_2 = 1$), and $X := u^T Z$ (projection of X along direction u). Then $\mathbb{E}(X) = u^T \mathbb{E}(Z)$, and $var(X) = u^T cov(Z)u$.
- Note: These transformations work for random vectors with any distribution, not just Gaussian distributions.
 - However, it is convenient to illustrate the effect of these transformations on Gaussian distributions, since the "shape" of the Gaussian pdf is easy to understand.

Multivariate Gaussians: General Gaussians

- ▶ If $Z \sim N(0, I)$ and $X = MZ + \mu$, we have $\mathbb{E}(X) = \mu$ and $cov(X) = MM^{\mathsf{T}}$
 - Assume $M \in \mathbb{R}^{d \times d}$ is invertible (else we get a degenerate Gaussian distribution).
 - $\blacktriangleright \text{ We say } X \sim \mathcal{N}(\mu, MM^{\mathsf{T}})$

Density function given by

$$p(x) = \frac{1}{(2\pi)^{d/2} |MM^{\mathsf{T}}|^{1/2}} \exp\left(-\frac{1}{2}(x-\mu)^{\mathsf{T}}(MM^{\mathsf{T}})^{-1}(x-\mu)\right).$$

Note: every non-singular covariance matrix ∑ can be written as MM^T for some non-singular matrix M. (We'll see why soon.)

Figure 3: Density function level sets for anisotropic Gaussian in \mathbb{R}^2

Inference with multivariate Gaussians (2)

▶ Bivariate case: $(X_1, X_2) \sim N(\mu, \Sigma)$ in \mathbb{R}^2

$$\boldsymbol{\mu} = \begin{bmatrix} \mu_1 \\ \mu_2 \end{bmatrix}, \quad \boldsymbol{\Sigma} = \begin{bmatrix} \boldsymbol{\Sigma}_{1,1} & \boldsymbol{\Sigma}_{1,2} \\ \boldsymbol{\Sigma}_{2,1} & \boldsymbol{\Sigma}_{2,2} \end{bmatrix}$$

▶ What is the distribution of X₂?

 $\blacktriangleright N(\mu_2, \Sigma_{2,2})$

• What is the distribution of $X_2 \mid X_1 = x_1$?

- Miracle 1: it is a Gaussian distribution
- Miracle 2: mean provided by linear prediction of X₂ from X₁ with smallest MSE
- Miracle 3: variance doesn't depend on x₁

Inference with multivariate Gaussians (2)

- What is the distribution of $X_2 \mid X_1 = x_1$?
 - Miracle 1: it is a Gaussian distribution
 - Miracle 2: mean provided by linear prediction of X₂ from X₁ with smallest MSE
 - Miracle 3: variance doesn't depend on x_1
 - OLS with X_1 as input variable and X_2 as output variable:

$$x_1 \mapsto \hat{m}x_1 + \hat{\theta}$$

where

$$\hat{m} = \frac{\operatorname{cov}(X_1, X_2)}{\operatorname{var}(X_1)} = \frac{\Sigma_{1,2}}{\Sigma_{1,1}},$$
$$\hat{\theta} = \mathbb{E}(X_2) - \hat{m}\mathbb{E}(X_1) = \mu_2 - \hat{m}\mu_1$$

Therefore:

$$\mathbb{E}[X_2 \mid X_1 = x_1] = \hat{m}x_1 + \hat{\theta} \\ = \mu_2 + \hat{m}(x_1 - \mu_1) \\ = \mu_2 + \frac{\Sigma_{1,2}}{\Sigma_{1,1}}(x_1 - \mu_1)$$

Inference with multivariate Gaussians (3)

- What is the distribution of $X_2 \mid X_1 = x_1$?
 - Miracle 1: it is a Gaussian distribution
 - Miracle 2: mean provided by linear prediction of X₂ from X₁ with smallest MSE
 - Miracle 3: variance doesn't depend on x₁

$$\operatorname{var}(X_{2} \mid X_{1} = x_{1}) = \mathbb{E}[\operatorname{var}(X_{2} \mid X_{1})]$$

= $\operatorname{var}(X_{2}) - \operatorname{var}(\mathbb{E}[X_{2} \mid X_{1}])$
= $\Sigma_{2,2} - \operatorname{var}(\hat{m}X_{1} + \hat{\theta})$
= $\Sigma_{2,2} - \hat{m}^{2} \operatorname{var}(X_{1})$
= $\Sigma_{2,2} - \frac{\Sigma_{1,2}^{2}}{\Sigma_{1,1}^{2}}\Sigma_{1,1}$
= $\Sigma_{2,2} - \frac{\Sigma_{1,2}^{2}}{\Sigma_{1,1}^{2}}.$

Inference with multivariate Gaussians (4)

 Beyond bivariate Gaussians: same as above, but just writing things properly using matrix notations

$$\mathbb{E}[X_2 \mid X_1 = x_1] = \mu_2 + \Sigma_{2,1} \Sigma_{1,1}^{-1} (x_1 - \mu_1)$$

$$\operatorname{cov}(X_2 \mid X_1 = x_1) = \Sigma_{2,2} - \Sigma_{2,1} \Sigma_{1,1}^{-1} \Sigma_{1,2}$$

Eigendecomposition (1)

• Every symmetric matrix $M \in \mathbb{R}^{d \times d}$ has d real <u>eigenvalues</u>, which we arrange as

$$\lambda_1 \geq \cdots \geq \lambda_d$$

Can choose corresponding orthonormal *eigenvectors*

$$v_1, \ldots, v_d \in \mathbb{R}^d$$

This means

$$Mv_i = \lambda_i v_i$$

for each $i = 1, \ldots, d$, and

$$v_i^{\mathsf{T}} v_j = \mathbf{1}_{\{i=j\}}$$

Eigendecomposition (2)

Arrange v_1, \ldots, v_d in an <u>orthogonal matrix</u> $V := [v_1| \cdots |v_d]$ $V^{\mathsf{T}}V = I$ and $VV^{\mathsf{T}} = \sum_{i=1}^d v_i v_i^{\mathsf{T}} = I$ Therefore, $M = MVV^{\mathsf{T}}$ $= \sum_{i=1}^d Mv_i v_i^{\mathsf{T}}$ $= \sum_{i=1}^d \lambda_i v_i v_i^{\mathsf{T}}$

- This is our preferred way to express the eigendecomposition
 - Also called spectral decomposition
 - Can also write $M = V\Lambda V^{\mathsf{T}}$, where $\Lambda = \operatorname{diag}(\lambda_1, \ldots, \lambda_d)$
 - ► The matrix V diagonalizes M:

$$V^{\mathsf{T}}MV = \Lambda$$

Covariance matrix (1)

• $A \in \mathbb{R}^{n \times d}$ is data matrix • $\Sigma := A^{\mathsf{T}} A = {}^{1} \Sigma^{n}$

$$\Sigma := A^{\intercal}A = \frac{1}{n} \sum_{i=1}^{n} x_i x_i^{\intercal}$$
 is

(empirical) second-moment matrix

- If ¹/_n ∑ⁿ_{i=1} x_i = 0 (data are "centered"), this is the (empirical) covariance matrix
- For purpose of exposition, just say/write "(co)variance" even though "second-moment" is technically correct

• For any unit vector
$$u \in \mathbb{R}^d$$
,

$$u^{\mathsf{T}} \varSigma u = \frac{1}{n} \sum_{i=1}^{n} (u^{\mathsf{T}} x_i)^2$$

is (empirical) variance of data along direction u

Covariance matrix (2)

Note: some pixels in OCR data have very little (or zero!) variation

- These are "coordinate directions" (e.g., u = (1, 0, ..., 0))
- Probably can/should ignore these!

Figure 4: Which pixels are likely to have very little variance?

Top eigenvector

 $\blacktriangleright~\varSigma$ is symmetric, so can write eigendecomposition

$$\varSigma = \sum_{i=1}^d \lambda_i v_i v_i^{\mathsf{T}}$$

In which direction is variance maximized?

- Answer: v_1 , corresponding to largest eigenvalue λ_1
 - Called the top eigenvector
 - This follows from the following characterization of v₁:

$$v_1^{\mathsf{T}} \Sigma v_1 = \max_{u \in \mathbb{R}^d : \|u\|_2 = 1} u^{\mathsf{T}} \Sigma u = \lambda_1.$$

Figure 5: What is the direction of the top eigenvector for the covariance of this Gaussian?

Top k eigenvectors

- ▶ What about among directions orthogonal to v₁?
 - Answer: v_2 , corresponding to second largest eigenvalue λ_2
- ▶ (Note: all eigenvalues of ∑ are non-negative!)
- For any k, $V_k := [v_1| \cdots |v_k]$ satisfies

$$\sum_{i=1}^{k} v_i^{\mathsf{T}} \varSigma v_i = \operatorname{tr}(V_k^{\mathsf{T}} \varSigma V_k) = \max_{U \in \mathbb{R}^{d \times k} : U^{\mathsf{T}} U = I} \operatorname{tr}(U^{\mathsf{T}} \varSigma U) = \sum_{i=1}^{k} \lambda_i$$

(the top k eigenvectors)

Principal component analysis

► k-dimensional principal components analysis (PCA) mapping:

$$\varphi(x) = (x^{\mathsf{T}}v_1, \dots, x^{\mathsf{T}}v_k) = V_k^{\mathsf{T}}x \in \mathbb{R}^k$$

where $V_k = [v_1|\cdots|v_k] \in \mathbb{R}^{d \times k}$

• (Only really makes sense when $\lambda_k > 0.$)

• This is a form of *dimensionality reduction* when k < d.

Figure 6: Fraction of residual variance from projections of varying dimension

Covariance of data upon PCA mapping

Covariance of data upon PCA mapping:

$$\frac{1}{n}\sum_{i=1}^{n}\varphi(x_i)\varphi(x_i)^{\mathsf{T}} = \frac{1}{n}\sum_{i=1}^{n}V_k^{\mathsf{T}}x_ix_i^{\mathsf{T}}V_k = V_k^{\mathsf{T}}\Sigma V_k = \Lambda_k$$

where Λ_k is diagonal matrix with $\lambda_1, \ldots, \lambda_k$ along diagonal. In particular, coordinates in $\varphi(x)$ -representation are uncorrelated.

PCA and linear regression

- ► Use k-dimensional PCA mapping \u03c6(x) = V_k^T x with ordinary least squares
- (Assume rank of A is at least k, so $A^{\mathsf{T}}A$ has $\lambda_k > 0$)
- Data matrix is

$$\frac{1}{\sqrt{n}} \begin{bmatrix} \leftarrow & \varphi(x_1)^{\mathsf{T}} & \to \\ & \vdots & \\ \leftarrow & \varphi(x_n)^{\mathsf{T}} & \to \end{bmatrix} = \frac{1}{\sqrt{n}} \begin{bmatrix} \leftarrow & x_1^{\mathsf{T}} V_k & \to \\ & \vdots & \\ \leftarrow & x_n^{\mathsf{T}} V_k & \to \end{bmatrix} = A V_k \in \mathbb{R}^{n \times k}$$

Therefore, OLS solution is

$$\hat{\beta} = (V_k^{\mathsf{T}} A^{\mathsf{T}} A V_k)^{-1} (A V_k)^{\mathsf{T}} b$$
$$= \Lambda_k^{-1} V_k^{\mathsf{T}} A^{\mathsf{T}} b$$

(Note: here $\hat{\beta} \in \mathbb{R}^k$.)

Principal component regression

• Use $\hat{\beta} = \Lambda_k^{-1} V_k^{\mathsf{T}} A^{\mathsf{T}} b$ to predict on new $x \in \mathbb{R}^d$:

$$\begin{split} \varphi(x)^{\mathsf{T}} \hat{\beta} &= (V_k^{\mathsf{T}} x)^{\mathsf{T}} \Lambda_k^{-1} V_k^{\mathsf{T}} A^{\mathsf{T}} b \\ &= x^{\mathsf{T}} (V_k \Lambda_k^{-1} V_k^{\mathsf{T}}) (A^{\mathsf{T}} b) \end{split}$$

So "effective" weight vector (that acts directly on x rather than φ(x)) is given by

$$\hat{w} := (V_k \Lambda_k^{-1} V_k^{\mathsf{T}}) (A^{\mathsf{T}} b).$$

- This is called <u>principal component regression (PCR)</u> (here, k is hyperparameter)
- Alternative hyper-parameterization: λ > 0; same as before but using the largest k such that λ_k ≥ λ.

Spectral regularization

- PCR and ridge regression are examples of spectral regularization.
- For a function $g \colon \mathbb{R} \to \mathbb{R}$, write g(M) to mean

$$g(M) = \sum_{i=1}^{d} g(\lambda_i) v_i v_i^{\mathsf{T}}$$

where M has eigendecomposition $M = \sum_{i=1}^{d} \lambda_i v_i v_i^{\mathsf{T}}$.

- I.e., g is applied to eigenvalues of M
- Generalizes effect of polynomials: e.g., $g(z) = z^2$

$$M^2 = (V\Lambda V^{\mathsf{T}})(V\Lambda V^{\mathsf{T}}) = V\Lambda^2 V^{\mathsf{T}}.$$

Claim: Can write each of PCR and ridge regression as

$$\hat{w} = g(A^{\mathsf{T}}A)A^{\mathsf{T}}b$$

for appropriate function g (depending on λ).

Comparing ridge regression and PCR

- $\blacktriangleright \ \hat{w} = g(A^{\mathsf{T}}A)A^{\mathsf{T}}b$
- Ridge regression (with parameter λ): $g(z) = \frac{1}{z+\lambda}$
- PCR (with parameter λ): $g(z) = \mathbf{1}_{\{z \ge \lambda\}} \cdot \frac{1}{z}$
- Interpretation:
 - PCR uses directions with sufficient variability; ignores the rest
 - Ridge artificially inflates the variance in all directions

Figure 7: Comparison of ridge regression and PCR

Matrix factorization

► Let
$$A = \begin{bmatrix} \leftarrow & x_1^{\mathsf{T}} & \rightarrow \\ & \vdots & \\ \leftarrow & x_n^{\mathsf{T}} & \rightarrow \end{bmatrix} \in \mathbb{R}^{n \times d}$$
 (forget the $1/\sqrt{n}$ scaling)

▶ Try to approximate A with BC, where $B \in \mathbb{R}^{n \times k}$ and $C \in \mathbb{R}^{k \times d}$, to minimize $||A - BC||_F^2$.

- Here, $\|\cdot\|_F$ is a matrix norm called <u>Frobenius norm</u>, which treats the $n \times d$ matrix as a vector in *nd*-dimensional Euclidean space
- Think of B as the encodings of the data in A
- "Dimension reduction" when k < d
- Theorem (Schmidt, 1907; Eckart-Young, 1936): Optimal solution is given by truncating the singular value decomposition (SVD) of A

Singular value decomposition

• Every matrix $A \in \mathbb{R}^{n \times d}$ —say, with rank r—can be written as

$$A = \sum_{i=1}^r \sigma_i u_i v_i^{\mathsf{T}}$$

where • $\sigma_1 \ge \cdots \ge \sigma_r > 0$ (singular values) • $u_1, \dots, u_r \in \mathbb{R}^n$ (orthonormal left singular vectors) • $v_1, \dots, v_r \in \mathbb{R}^d$ (orthonormal right singular vectors) • Can also write as $A = USV^{\mathsf{T}}$

where

$$\begin{array}{l} \blacktriangleright \quad U = [u_1|\cdots|u_r] \in \mathbb{R}^{n \times r}, \text{ satisfies } U^{\mathsf{T}}U = I \\ \blacktriangleright \quad S = \operatorname{diag}(\sigma_1, \ldots, \sigma_r) \in \mathbb{R}^{r \times r} \\ \blacktriangleright \quad V = [v_1|\cdots|v_r] \in \mathbb{R}^{d \times r}, \text{ satisfies } V^{\mathsf{T}}V = I \end{array}$$

Truncated SVD

Let A have SVD A = ∑_{i=1}^r σ_iu_iv_i^T (rank of A is r)
 Truncate at rank k (for any k ≤ r): rank-k SVD

$$A_k := \sum_{i=1}^k \sigma_i u_i v_i^{\mathsf{T}}$$

► Can write as
$$A_k := U_k S_k V_k^{\mathsf{T}}$$
, where
► $U_k = [u_1|\cdots|u_k] \in \mathbb{R}^{n \times k}$, satisfies $U^{\mathsf{T}}U = I$
► $S_k = \operatorname{diag}(\sigma_1, \dots, \sigma_k) \in \mathbb{R}^{k \times k}$
► $V_k = [v_1|\cdots|v_k] \in \mathbb{R}^{d \times r}$, satisfies $V^{\mathsf{T}}V = I$

Theorem (Schmidt/Eckart-Young):

$$||A - A_k||_F^2 = \min_{M: \operatorname{rank}(M) = k} ||A - M||_F^2 = \sum_{i=k+1}^r \sigma_i^2$$

Encoder/decoder interpretation (1)

- Encoder: x → φ(x) = V_k^Tx ∈ ℝ^k
 Encoding rows of A: AV_k = U_kS_k
 Decoder: z → V_kz ∈ ℝ^d
 Decoding rows of U_kS_k: U_kS_kV_k^T = A_k
 Same as k-dimensional PCA mapping!
 A^TA = VS²V^T, so eigenvectors of A^TA are right singular vectors of A, non-zero eigenvalues are squares of the singular
 - values
 - PCA/SVD finds k-dimensional subspace of smallest sum of squared distances to data points.

Encoder/decoder interpretation (2)

► Example: OCR data, compare original image to decoding of k-dimensional PCA encoding (k ∈ {1, 10, 50, 200})

Figure 9: PCA compression of MNIST digit

Application: Topic modeling (1)

- Start with n documents, represent using "bag-of-words" count vectors
- Arrange in matrix $A \in \mathbb{R}^{n \times d}$, where d is vocabulary size

	aardvark	abacus	abalone	• • •
doc 1	3	0	0	•••
doc 2	7	0	4	•••
doc 3	2	4	0	
÷	:	÷	:	

Application: Topic modeling (2)

Rank k SVD provides an approximate factorization

$A \approx BC$

where $B \in \mathbb{R}^{n \times k}$ and $C \in \mathbb{R}^{k \times d}$

- ► This use of SVD is called *Latent Semantic Analysis (LSA)*
- Interpret rows of C as "topics"
- $B_{i,t}$ is "weight" of document *i* on topic *t*
- ► If rows of C were probability distributions, could interpret as C_{t,w} as probability that word w appears in topic t

Application: Matrix completion (1)

- Start with ratings of movies given by users
- Arrange in a matrix $A \in \mathbb{R}^{n \times d}$, where $A_{i,j}$ is rating given by user i for movie j.
 - ▶ Netflix: n = 480000, d = 18000; on average, each user rates 200 movies
 - Most entries of A are unknown
- Idea: Approximate A with low-rank matrix, i.e., find

$$B = \begin{bmatrix} \leftarrow & b_1^{\mathsf{T}} & \rightarrow \\ & \vdots & \\ \leftarrow & b_n^{\mathsf{T}} & \rightarrow \end{bmatrix} \in \mathbb{R}^{n \times k}, \qquad C = \begin{bmatrix} \uparrow & & \uparrow \\ c_1 & \cdots & c_d \\ \downarrow & & \downarrow \end{bmatrix} \in \mathbb{R}^{k \times d}$$

with goal of minimizing $\|A - BC\|_F^2$

Note: If all entries of A were observed, we could do this with truncated SVD.

Application: Matrix completion (2)

- Need to find a low-rank approximation without all of A: (low-rank) matrix completion
 - Lots of ways to do this
 - Popular way (used in Netflix competition): based on "stochastic gradient descent" (discussed later)
 - Another way: fill in missing entries with plug-in estimates (based on a statistical model), then compute truncated SVD as usual

Feature representations from matrix completion

- MovieLens data set (n = 6040 users, d = 3952 movies, $|\Omega| = 800000$ ratings)
- ▶ Fit B and C by using a standard matrix completion method (based on SGD, discussed later)
- Are $c_1, \ldots, c_d \in \mathbb{R}^k$ useful feature vectors for movies?

Some nearest-neighbor pairs $(c_j, NN(c_j))$:

- Toy Story (1995), Toy Story 2 (1999)
- Sense and Sensibility (1995), Emma (1996)
- Heat (1995), Carlito's Way (1993)
- The Crow (1994), Blade (1998)
- ► Forrest Gump (1994), Dances with Wolves (1990)
- Mrs. Doubtfire (1993), The Bodyguard (1992)