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Multivariate Gaussians and PCA



Outline

» Multivariate Gaussians

» Eigendecompositions and covariance matrices

» Principal component analysis

» Principal component regression and spectral regularization
» Singular value decomposition

» Examples: topic modeling and matrix completion
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Multivariate Gaussians: Isotropic Gaussians

» Start with X = (X1,...,Xy) ~N(0,1), i.e,, X1,...,Xq are
iid N(0,1) random variables.

2

>
>
>

Probability density function is product of (univariate) Gaussian
densities

E(X;)=0

var(X;) = cov(X;, X;) =1, cov(X;, X;) =0 fori # j
Arrange in mean vector E(X) = 0, covariance matrix
cov(X)=1
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Figure 1:

Density function for isotropic Gaussian in R?
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Figure 2: Density function level sets for isotropic Gaussian in R2
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Affine transformations of random vectors

» Start with any random vector Z, then apply linear
transformation, followed by translation
> X :=MZ+ p, for M € R¥*? and 1 € R*
» Fact: E(X) = ME(Z) + p, cov(X) = M cov(Z)M"
> E.g., let u € R? be a unit vector (|jull2 = 1), and X :=u"Z
(projection of X along direction u). Then E(X) = «"E(Z), and
var(X) = u' cov(Z)u.
» Note: These transformations work for random vectors with any
distribution, not just Gaussian distributions.
» However, it is convenient to illustrate the effect of these
transformations on Gaussian distributions, since the “shape” of
the Gaussian pdf is easy to understand.
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Multivariate Gaussians: General Gaussians

» If Z~N(0,I) and X = MZ + 1, we have E(X) = p and
cov(X)=MMT
> Assume M € R¥* is invertible (else we get a degenerate
Gaussian distribution).
> We say X ~ N(u, MMT)
» Density function given by

) = e o (50 -0 0D - ).

» Note: every non-singular covariance matrix X' can be written as
MMT for some non-singular matrix M. (We'll see why soon.)
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Figure 3: Density function level sets for anisotropic Gaussian in R?
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Inference with multivariate Gaussians (2)

» Bivariate case: (X1, X2) ~ N(u, X)) in R?
1 2 22
pr— 3 2 pr— ’ ’
K L@] [22,1 22,21
» What is the distribution of X57?
> N(p2, X22)

» What is the distribution of X5 | X1 = 217

» Miracle 1: it is a Gaussian distribution
» Miracle 2: mean provided by linear prediction of X5 from X3

with smallest MSE
» Miracle 3: variance doesn’t depend on x;
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Inference with multivariate Gaussians (2)

» What is the distribution of Xy | X1 = 217
> Miracle 1: it is a Gaussian distribution
» Miracle 2: mean provided by linear prediction of X5 from X3
with smallest MSE
» Miracle 3: variance doesn’t depend on
» OLS with X7 as input variable and X5 as output variable:

Ty 1y +0

where
COV()(l7 Xg) o 2172

var(Xl) 21,17
0 = E(Xz) — mE(X1) = pip — iy

m

» Therefore:
E[XQ | X1 = 171] = mxl +é
= po +m(x1 — p1)

i

i

= p2 + (x1 — 1)
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Inference with multivariate Gaussians (3)

» What is the distribution of X5 | X1 = 217

» Miracle 1: it is a Gaussian distribution

» Miracle 2: mean provided by linear prediction of X5 from X3
with smallest MSE

» Miracle 3: variance doesn’t depend on x;

var(Xe | X1 = 1) = E[var(Xs | X1)]
= var(Xs) — var(E[ X5 | X4])
= 2272 — var(le + é)

= 2272 — mQ Val"(Xl)

22
12
=250 — 7. i
1,1
2
B 279
299 —
2
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Inference with multivariate Gaussians (4)

» Beyond bivariate Gaussians: same as above, but just writing
things properly using matrix notations

E[X; | X1 = 1] = pg + o1 271 (41 — 1)
COV(X2 ’ X1 = .1‘1) = 2272 — 227121_’112172
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Eigendecomposition (1)
» Every symmetric matrix M € R%*9 has d real eigenvalues,
which we arrange as
AL =2 A
» Can choose corresponding orthonormal eigenvectors
Vi,...,04 e R?

» This means
]V.[’UZ‘ = )\ﬂ)i

foreachi=1,...,d, and

viv; = L=
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Eigendecomposition (2)

» Arrange vy, ...,vq in an orthogonal matrix V := [v1| - - - |v4]

> VTV =Tand VV =30 vl =1
» Therefore,

M=MVVT

d
= Z Muvv]
=1
d
= Z /\ﬂ}ﬂ]iT
=1

» This is our preferred way to express the eigendecomposition

» Also called spectral decomposition
» Can also write M = VAV, where A = diag(A1,...,A\q)
» The matrix V' diagonalizes M

VIMV = A
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Covariance matrix (1)

> A c R"% s data matrix
. 1 .
> YN i=ATA= -3 mx] s
(empirical) second-moment matrix
> If 13"  2; =0 (data are “centered”), this is the
(empirical) covariance matrix

» For purpose of exposition, just say/write “(co)variance” even
though “second-moment” is technically correct

» For any unit vector u € R?,

1 n
u'Xu=— Z(uTl‘i)Q

=1

is (empirical) variance of data along direction u
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Covariance matrix (2)

» Note: some pixels in OCR data have very little (or zero!)
variation
» These are “coordinate directions” (e.g., u = (1,0,...,0))
» Probably can/should ignore these!

Figure 4: Which pixels are likely to have very little variance?
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Top eigenvector

> J is symmetric, so can write eigendecomposition

d
Y= Z /\i’UZ"UiT
=1

» In which direction is variance maximized?
P> Answer: v, corresponding to largest eigenvalue \;

» Called the top eigenvector
» This follows from the following characterization of vy:

vy Xy = max  u'Xu = ).
weRd:|[u]| ;=1
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Figure 5: What is the direction of the top eigenvector for the covariance of
this Gaussian?
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Top k eigenvectors

» What about among directions orthogonal to v;?
» Answer: vy, corresponding to second largest eigenvalue Ao
» (Note: all eigenvalues of X' are non-negative!)
» For any k, Vj, := [v1]- - - |vg] satisfies
k k
Tyy, _ T _ T _ .
Evi Yv; = tr(VI V) UGR&%U:IM(U 2U) Zj A
i=1 i=1
(the top k eigenvectors)
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Principal component analysis

» k-dimensional principal components analysis (PCA) mapping:

o(x) = (z"v,...,x7v;) = Viz € R

where Vi, = [v1] - - - |ug] € RP¥F
» (Only really makes sense when \; > 0.)
» This is a form of dimensionality reduction when k < d.
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Figure 6: Fraction of residual variance from projections of varying
dimension
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Covariance of data upon PCA mapping

» Covariance of data upon PCA mapping:

1& 1 &
- > o@i)e(a)" = - > Viwa Vi = Vi ZVi, = Ay
i—1 i1

where Ay is diagonal matrix with Ay, ..., \; along diagonal.

» In particular, coordinates in ¢(x)-representation are
uncorrelated.

4 4
3 3
2 2
S &
0 0
1 1t
2 2

4
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PCA and linear regression

» Use k-dimensional PCA mapping ¢(x) = V}/z with ordinary
least squares
» (Assume rank of A is at least k, so A" A has \; > 0)
» Data matrix is
) — o) — . — Vi —
— : = —— : = AV, € R™F
Vi - Vi )

— plxy)" — — Vi, —
» Therefore, OLS solution is

B = (VIATAV,) L (AVi)"D
=A'VTATD

(Note: here 3 € RF)
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Principal component regression

> Use 3 = AI;leTATb to predict on new z € R%:
p(@)"8 = (V) AL VT AT
= 2" (ViA, Vi) (ATD)
» So “effective” weight vector (that acts directly on x rather
than ¢(z)) is given by
W= (ViAW) (ATD).

» This is called principal component regression (PCR) (here, k is
hyperparameter)

» Alternative hyper-parameterization: A > 0; same as before but
using the largest k such that Ay > .
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Spectral regularization

» PCR and ridge regression are examples of
spectral regularization.

» For a function g: R — R, write g(M) to mean

d

g(M) =" g(N)viv]

i=1

where M has eigendecomposition M = Zle Aiviv]
» |.e., g is applied to eigenvalues of M
> Generalizes effect of polynomials: e.g., g(z) = 22

M?* = (VAVT)(VAVT) = VA2V,
» Claim: Can write each of PCR and ridge regression as
W =g(ATA)ATD
for appropriate function g (depending on ).
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Comparing ridge regression and PCR

> = g(ATA)ATb
» Ridge regression (with parameter \): g(z) = ler)\
> PCR (with parameter \): g(z) = 1.5y - %

P Interpretation:

» PCR uses directions with sufficient variability; ignores the rest
» Ridge artificially inflates the variance in all directions

0 0.2 0.4 0.6 0.8 1
z

Figure 7: Comparison of ridge regression and PCR
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Matrix factorization

— x] —
> Let A= : € R™*4 (forget the 1/y/n scaling)
— x, =
» Try to approximate A with BC, where B € R"** and
C € R¥*4, to minimize |A — BC||%.

> Here, || - || is a matrix norm called Frobenius norm, which
treats the n x d matrix as a vector in nd-dimensional Euclidean
space

» Think of B as the encodings of the data in A
» “Dimension reduction” when k < d
» Theorem (Schmidt, 1907; Eckart-Young, 1936): Optimal
solution is given by truncating the
singular value decomposition (SVD) of A

26/35



Singular value decomposition

» Every matrix A € R"*%—say, with rank r—can be written as

,

_ T

A= g oiUv;
i=1

where
» o1 >+ >0, > 0 (singular values)
> up,...,u, € R™ (orthonormal left singular vectors)
> vp,...,v, € R? (orthonormal right singular vectors)

» Can also write as
A=USVT

where
> U =[u|---|u,] € R"™", satisfies U'U =T
» S =diag(oy,...,0.) € R™*"
> V= [v] - |v,] € RIXT, satisfies VTV = [
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Truncated SVD

» Let A have SVD A =377, o;u;v; (rank of A is r)
» Truncate at rank k (for any k <r): rank-k SVD

k
o 2 : T
Ak = OiUiv;
=1

» Can write as Ay := Uy S;V,!, where
> Uy = [uy] - |ug] € R"**, satisfies UTU = T
> S, = diag(oy,...,0r) € RFXF
> Vi = [v1] - |v] € RIXT, satisfies VTV = [

» Theorem (Schmidt/Eckart-Young):

1A = ApllE = min A~ M|z = Z of
M:rank(M)=k 1=k+1
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Encoder/decoder interpretation (1)

» Encoder: z — ¢(z) = VJlz € RF
» Encoding rows of A: AV}, = UySk
» Decoder: z — Vjz € RY
» Decoding rows of UpSy: UpSLVy = Ay
» Same as k-dimensional PCA mapping!
> ATA=VS2?VT, so eigenvectors of ATA are right singular
vectors of A, non-zero eigenvalues are squares of the singular

values
» PCA/SVD finds k-dimensional subspace of smallest sum of

squared distances to data points.

\ N

NN \
\
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Encoder/decoder interpretation (2)

» Example: OCR data, compare original image to decoding of

k-dimensional PCA encoding (k € {1, 10,50,200})

>

3

5

3

>

Figure 9: PCA compression of MNIST digit
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Application: Topic modeling (1)

» Start with n documents, represent using “bag-of-words” count

vectors

» Arrange in matrix A € R"*¢ where d is vocabulary size

aardvark abacus abalone

doc 1
doc 2
doc 3

3 0 0
7 0 4
2 4 0
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Application: Topic modeling (2)

» Rank k& SVD provides an approximate factorization
A~ BC

where B € R"** and C € RF*4
» This use of SVD is called Latent Semantic Analysis (LSA)
» Interpret rows of C as “topics”
» B, is “weight" of document i on topic ¢
> If rows of C' were probability distributions, could interpret as
C' . as probability that word w appears in topic ¢
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Application: Matrix completion (1)

» Start with ratings of movies given by users
» Arrange in a matrix A € R"*¢ where Aj; j is rating given by
user ¢ for movie j.
» Netflix: n = 480000, d = 18000; on average, each user rates
200 movies
» Most entries of A are unknown

» Idea: Approximate A with low-rank matrix, i.e., find

— b — 1 4
B = : e Rk, C=le, - cq| € RF*d
— b = ! 3

with goal of minimizing ||A — BC||%
» Note: If all entries of A were observed, we could do this with
truncated SVD.
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Application: Matrix completion (2)

» Need to find a low-rank approximation without all of A:
(low-rank) matrix completion
» Lots of ways to do this
» Popular way (used in Netflix competition): based on “stochastic
gradient descent” (discussed later)
> Another way: fill in missing entries with plug-in estimates (based
on a statistical model), then compute truncated SVD as usual
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Feature representations from matrix completion

» Movielens data set (n = 6040 users, d = 3952 movies,
|2] = 800000 ratings)

» Fit B and C' by using a standard matrix completion method
(based on SGD, discussed later)

> Areci,...,cq € RF useful feature vectors for movies?

» Some nearest-neighbor pairs (c;, NN(c;)):

VVYVVYVYY

Toy Story (1995), Toy Story 2 (1999)

Sense and Sensibility (1995), Emma (1996)

Heat (1995), Carlito’s Way (1993)

The Crow (1994), Blade (1998)

Forrest Gump (1994), Dances with Wolves (1990)
Mrs. Doubitfire (1993), The Bodyguard (1992)
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https://grouplens.org/datasets/movielens/
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