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Regression Il: Regularization



» Inductive biases in linear regression

» Regularization

» Model averaging

» Bayesian interpretation of regularization
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Inductive bias

» In linear regression, possible for least square solution to be
non-unique, in which case there are infinitely-many solutions.
» Which one should we pick?
» Possible answer: Pick shortest solution, i.e., of minimum
(squared) Euclidean norm |jw]|3.
» Small norm = small changes in output in response to changes
in input:
[w'e —w'a| < w2+ |z =2’
—_— ——

change in output change in input

(easy consequence of Cauchy-Schwarz)

» Note: data does not give reason to choose shorter w over
longer w.

» Preference for short w is an example of an inductive bias.

» All learning algorithms encode some form of inductive bias.
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Example of minimum norm inductive bias

» Trigonometric feature expansion
o(x) = (sin(z), cos(x), . . ., sin(32z), cos(32z)) € R%

» n = 32 training examples
» Infinitely many solutions to normal equations

arbitrary solution
least Euclidean norm solution

ot least weighted norm solution
*  training data

Figure 1: Fitted linear models with trigonometric feature expansion
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Representation of minimum norm solution (1)

» Claim: The minimum (Euclidean) norm solution to normal
equations lives in span of the z;'s (i.e., in range(A")).
» |.e., can write

n
w=ATa = g 0T
i=1

for some a = (ay,...,a,) € R™
» (Replace x; with ¢(x;) if using feature map ¢.)

> Proof: If we have any solution of the form w = s 4+ r, where
s € range(AT"), and r # 0 is in null(A) (i.e., Ar = 0), we can
remove r and have a shorter solution:

ATb=ATAw = ATA(s+r) = ATAs + AT(Ar) = A" As.

(Recall Pythagorean theorem: ||w]||3 = |s]|3 + ||7]|3)
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Representation of minimum norm solution (2)

» In fact, minimum Euclidean norm solution is unique!

» If two distinct solutions w and w’ have the same length, then
averaging them gives another solution %(u} + w') of shorter
length.
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Regularization

» Combine two concerns: making both R(w) and |jwl|3 small
» Pick A > 0, and minimize

R(w) + Awll3

» If A > 0, solution is always unique (even if n < d).

» Called ridge regression.
> \=0is OLS/ERM.
> )\ controls how much to pay attention to regularizer ||w]||3

relative to data fitting term R (w)
> )\ is hyperparameter to tune (e.g., using cross-validation)

» Solution is also in span of the z;'s (i.e., in range(A"))
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Example of regularization with squared norm penality

» Trigonometric feature expansion
o(x) = (sin(z), cos(z), .. .,sin(32x), cos(32x))

» Trade-off between fit to data and regularizer

1 32
min — Z (ngO(xi) - yi)2 +A Z y (wSQin,j + w?os,j)

weRS: Ny

i=1 j=1
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o

Figure 2: Trading-off between data fitting term and regularizer

x

squared weighted norm penalized solution ( A=0.1)
squared weighted norm penalized solution ( A=0.01)
squared weighted norm penalized solution ( A=0)
training data
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Data augmentation (1)

> Let A= [\/I%I] € Rntd)xd gnq j = [b] € Rntd

0
> Then ||[Aw — b||2 = R(w) 4 A|jw||3 (ridge regression objective)

> Interpretation:

» d “fake” data points, ensures augmented A has rank d
» All corresponding labels are zero.

> ATA=ATA+ Al and ATh = ATb
» So ridge regression solution is @ = (ATA + A\I)"1A"b
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Data augmentation (2)

» Domain-specific data augmentation: e.g., image
transformations

Figure 3: What data augmentations make sense for OCR digit recognition?
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Lasso

> Lasso: minimize R(w) + Aljw||y
> Here, [lv[1 = >=7_, |vj], sum of absolute values of vector
entries
» Prefers short w, where length is measured using different norm
» Tends to produce w that are sparse (i.e., have few non-zero
entries), or at least are well-approximated by sparse vectors.
» A different inductive bias:

whe —w'a| < Jlwlly - [lz — 2"l
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Lasso vs ridge regression

Coefficients

» Example: coefficient profile of Lasso vs ridge

» x = clinical measurements, y = level of prostate cancer antigen

» Horizontal axis: varying A\ (large A to left, small A to right).

» Vertical axis: coefficient value in Lasso and ridge solutions, for
eight different features

Icavol

0.6
0.6

0.4
L
0.4

svi
weight
pggas

Ibph

0.2
Coefficients
0.2

s gleason

age

-02

Icp

Shrinkage Factor s df(\) 12/22



Inductive bias from minimum ¢; norm

» Theorem: Pick any w € R? and any ¢ € (0,1). Form & € R?
by including the [1/£2] largest (by magnitude) coefficients of
w, and setting remaining entries to zero. Then

[& — w2 < ef|wl.

» If ||w]|y is small (compared to ||w]||2), then theorem says w is
well-approximated by sparse vector.
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Sparsity

P Lasso also tries to make coefficients small. What if we only
care about sparsity?

» Subset selection: minimize empirical risk among all k-sparse
solutions

» Greedy algorithms: repeatedly choose new variables to “include
in support of w until k variables are included.

» Forward stepwise regression | orthogonal matching pursuit:
Each time you “include” a new variable, re-fit all coefficients for
included variables.

» Often works as well as Lasso

» Why do we care about sparsity?
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Detour: Model averaging

A

» Suppose we have M real-valued predictors, fl, ces M

» How to take advantage of all of them?

» Model selection: pick the best one, e.g., using hold-out method

» Model averaging: form “ensemble” predictor favg, where for
any z,

M
favg == z_:
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Risk of model averaging

> R(f) :=E[(f(X) — Y)?] for some random variable (X,Y)
taking values in X x R.

» Theorem: For any fl, .. .,fM: X — R, the ensemble
predictor favg = ﬁ Z;Vil fj satisfies

M

LS B [(fusx) - 0.
M=

favg ZR f]

P Better than model selection when:
> all fj have similar risks, and
> all fj predict very differently from each other
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Stacking and features

» In model averaging, “weights" of 1/M for all f] seems arbitrary
» Can “learn” weights using linear regression!

> Use feature expansion o(z) = (fi(2),..., fur(x))

» Called stacking

» Use additional data (independent of fi, .. .,fM)

» Upshot: Any function (even learned functions) can be a feature
» Conversely: Behind every feature is a deliberate modeling

choice
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Detour: Bayesian statistics

» Bayesian inference: probabilistic approach to updating beliefs
> Posit a (parametric) statistical model for data (likelihood)
» Start with some beliefs about the parameters of model (prior)
» Update beliefs after seeing data (posterior) o

1
Pr(w | data) = Pr(w) - Pr(data | w)
—r Zdata N~ N —r
posterior(w) prior(w) likelihood(w)

» (Finding normalization constant Zg,t, is often the
computationally challenging part of belief updating.)
» Basis for reasoning in humans (maybe?), robots, etc.
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Beyond Bayesian inference

» Can use Bayesian inference framework for designing
estimation/learning algorithms (even if you aren’'t a Bayesian!)
» E.g., instead of computing entire posterior distribution, find the
w with highest posterior probability
» Called maximum a posteriori (MAP) estimator
» Just find w to maximize

prior(w) x likelihood(w).

» (Avoids issue with finding normalization constant.)

19/22



Bayesian approach to linear regression

» In linear regression model, express prior belief about
w = (w1, ...,wy) using a probability distribution with density
function ’
» Simple choice: prior(wy,...,wq) = H?Zl \/ﬁ exp(f%)
> le, treat wy,...,wy as independent N(0, 02) random variables
» Likelihood model: (X1,Y7),...,(X,,Y,) are conditionally
independent given w, and Y; | (X;, w) ~ N(Xw,1).
» What is the MAP?
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MAP for Bayesian linear regression

» Find w to maximize

4 W2\ ' T
1:[ \/WeXp <_%,j2> z:l_[lp(%) : E exp(—(y; — o} w>2/2) .

prior(w) likelihood (w)

(Here, p is marginal density of X; unimportant.)
P> Take logarithm and omit terms not involving w:

1 ¢ 1
T; 5; —JZ"LU

2 _ L P . .
» For 0% = ~X» Same as minimizing

n
wa yi) + Allwll3,

which is the ridge regression objective!
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Example: Dartmouth data example

>

Dartmouth data example, where we considered intervals for the
HS GPA variable:

(0.00,0.25], (0.25,0.50], (0.50,0.75]

Use ¢(z) = (1{2¢(0.00,0.25]}» L {zc(0.25,0.50)}: - - - ) With a linear
function

Regularization: )\Z?Zl(wj — p)? where ;1 = 2.46 is mean of
College GPA values.

What's the Bayesian interpretation of minimizing the following
objective?

S|

d
D (o) w—yi)? + A (wj — p)?
=1

22/22



	Regression II: Regularization

