
Machine learning lecture slides

COMS 4771 Fall 2020

0 / 22



Regression II: Regularization



Outline

I Inductive biases in linear regression
I Regularization
I Model averaging
I Bayesian interpretation of regularization

1 / 22



Inductive bias

I In linear regression, possible for least square solution to be
non-unique, in which case there are infinitely-many solutions.

I Which one should we pick?
I Possible answer: Pick shortest solution, i.e., of minimum

(squared) Euclidean norm ‖w‖2
2.

I Small norm ⇒ small changes in output in response to changes
in input:

|wTx− wTx′|︸ ︷︷ ︸
change in output

≤ ‖w‖2 · ‖x− x′‖2︸ ︷︷ ︸
change in input

(easy consequence of Cauchy-Schwarz)
I Note: data does not give reason to choose shorter w over

longer w.
I Preference for short w is an example of an inductive bias.

I All learning algorithms encode some form of inductive bias.
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Example of minimum norm inductive bias

I Trigonometric feature expansion
ϕ(x) = (sin(x), cos(x), . . . , sin(32x), cos(32x)) ∈ R64

I n = 32 training examples
I Infinitely many solutions to normal equations
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Figure 1: Fitted linear models with trigonometric feature expansion
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Representation of minimum norm solution (1)

I Claim: The minimum (Euclidean) norm solution to normal
equations lives in span of the xi’s (i.e., in range(AT)).
I I.e., can write

w = ATα =
n∑
i=1

αixi

for some α = (α1, . . . , αn) ∈ Rn.
I (Replace xi with ϕ(xi) if using feature map ϕ.)

I Proof: If we have any solution of the form w = s+ r, where
s ∈ range(AT), and r 6= 0 is in null(A) (i.e., Ar = 0), we can
remove r and have a shorter solution:

ATb = ATAw = ATA(s+ r) = ATAs+AT(Ar) = ATAs.

(Recall Pythagorean theorem: ‖w‖22 = ‖s‖22 + ‖r‖22)
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Representation of minimum norm solution (2)

I In fact, minimum Euclidean norm solution is unique!
I If two distinct solutions w and w′ have the same length, then

averaging them gives another solution 1
2 (w + w′) of shorter

length.
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Regularization

I Combine two concerns: making both R̂(w) and ‖w‖22 small
I Pick λ ≥ 0, and minimize

R̂(w) + λ‖w‖2
2

I If λ > 0, solution is always unique (even if n < d).
I Called ridge regression.
I λ = 0 is OLS/ERM.
I λ controls how much to pay attention to regularizer ‖w‖2

2

relative to data fitting term R̂(w)
I λ is hyperparameter to tune (e.g., using cross-validation)

I Solution is also in span of the xi’s (i.e., in range(AT))
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Example of regularization with squared norm penality

I Trigonometric feature expansion

ϕ(x) = (sin(x), cos(x), . . . , sin(32x), cos(32x))

I Trade-off between fit to data and regularizer

min
w∈R64

1
n

n∑
i=1

(
wTϕ(xi)− yi

)2 + λ

32∑
j=1

2j(w2
sin,j + w2

cos,j)
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Figure 2: Trading-off between data fitting term and regularizer
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Data augmentation (1)

I Let Ã =
[
A√
λI

]
∈ R(n+d)×d and b̃ =

[
b
0

]
∈ Rn+d

I Then ‖Ãw − b̃‖22 = R̂(w) + λ‖w‖22 (ridge regression objective)

I Interpretation:
I d “fake” data points, ensures augmented Ã has rank d
I All corresponding labels are zero.

I ÃTÃ = ATA+ λI and ÃTb̃ = ATb
I So ridge regression solution is ŵ = (ATA+ λI)−1ATb
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Data augmentation (2)

I Domain-specific data augmentation: e.g., image
transformations

Figure 3: What data augmentations make sense for OCR digit recognition?
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Lasso

I Lasso: minimize R̂(w) + λ‖w‖1
I Here, ‖v‖1 =

∑n
j=1 |vj |, sum of absolute values of vector

entries
I Prefers short w, where length is measured using different norm
I Tends to produce w that are sparse (i.e., have few non-zero

entries), or at least are well-approximated by sparse vectors.
I A different inductive bias:

|wTx− wTx′| ≤ ‖w‖1 · ‖x− x′‖∞
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Lasso vs ridge regression

I Example: coefficient profile of Lasso vs ridge
I x = clinical measurements, y = level of prostate cancer antigen
I Horizontal axis: varying λ (large λ to left, small λ to right).
I Vertical axis: coefficient value in Lasso and ridge solutions, for

eight different features
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Inductive bias from minimum `1 norm

I Theorem: Pick any w ∈ Rd and any ε ∈ (0, 1). Form w̃ ∈ Rd
by including the d1/ε2e largest (by magnitude) coefficients of
w, and setting remaining entries to zero. Then

‖w̃ − w‖2 ≤ ε‖w‖1.

I If ‖w‖1 is small (compared to ‖w‖2), then theorem says w is
well-approximated by sparse vector.
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Sparsity

I Lasso also tries to make coefficients small. What if we only
care about sparsity?

I Subset selection: minimize empirical risk among all k-sparse
solutions

I Greedy algorithms: repeatedly choose new variables to “include”
in support of w until k variables are included.
I Forward stepwise regression / orthogonal matching pursuit:

Each time you “include” a new variable, re-fit all coefficients for
included variables.

I Often works as well as Lasso
I Why do we care about sparsity?
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Detour: Model averaging

I Suppose we have M real-valued predictors, f̂1, . . . , f̂M
I How to take advantage of all of them?
I Model selection: pick the best one, e.g., using hold-out method
I Model averaging: form “ensemble” predictor f̂avg, where for

any x,

f̂avg(x) := 1
M

M∑
j=1

f̂j(x).
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Risk of model averaging

I R(f) := E[(f(X)− Y )2] for some random variable (X,Y )
taking values in X × R.

I Theorem: For any f̂1, . . . , f̂M : X → R, the ensemble
predictor f̂avg := 1

M

∑M
j=1 f̂j satisfies

R(f̂avg) = 1
M

M∑
j=1
R(f̂j)−

1
M

M∑
j=1

E
[
(f̂avg(X)− f̂j(X))2

]
.

I Better than model selection when:
I all f̂j have similar risks, and
I all f̂j predict very differently from each other
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Stacking and features

I In model averaging, “weights” of 1/M for all f̂j seems arbitrary
I Can “learn” weights using linear regression!

I Use feature expansion ϕ(x) = (f̂1(x), . . . , f̂M (x))
I Called stacking
I Use additional data (independent of f̂1, . . . , f̂M )

I Upshot: Any function (even learned functions) can be a feature
I Conversely: Behind every feature is a deliberate modeling

choice
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Detour: Bayesian statistics

I Bayesian inference: probabilistic approach to updating beliefs
I Posit a (parametric) statistical model for data (likelihood)
I Start with some beliefs about the parameters of model (prior)
I Update beliefs after seeing data (posterior)

Pr(w | data)︸ ︷︷ ︸
posterior(w)

= 1
Zdata

Pr(w)︸ ︷︷ ︸
prior(w)

·Pr(data | w)︸ ︷︷ ︸
likelihood(w)

I (Finding normalization constant Zdata is often the
computationally challenging part of belief updating.)

I Basis for reasoning in humans (maybe?), robots, etc.
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Beyond Bayesian inference

I Can use Bayesian inference framework for designing
estimation/learning algorithms (even if you aren’t a Bayesian!)
I E.g., instead of computing entire posterior distribution, find the

w with highest posterior probability
I Called maximum a posteriori (MAP) estimator
I Just find w to maximize

prior(w)× likelihood(w).

I (Avoids issue with finding normalization constant.)
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Bayesian approach to linear regression

I In linear regression model, express prior belief about
w = (w1, . . . , wd) using a probability distribution with density
function
I Simple choice: prior(w1, . . . , wd) =

∏d
j=1

1√
2πσ2 exp(− w2

j

2σ2 )
I I.e., treat w1, . . . , wd as independent N(0, σ2) random variables

I Likelihood model: (X1, Y1), . . . , (Xn, Yn) are conditionally
independent given w, and Yi | (Xi, w) ∼ N(XT

i w, 1).
I What is the MAP?
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MAP for Bayesian linear regression

I Find w to maximize
d∏
j=1

1√
2πσ2

exp
(
−
w2
j

2σ2

)
︸ ︷︷ ︸

prior(w)

·
n∏
i=1

p(xi) ·
1√
2π

exp(−(yi − xT
iw)2/2)︸ ︷︷ ︸

likelihood(w)

.

(Here, p is marginal density of X; unimportant.)
I Take logarithm and omit terms not involving w:

− 1
2σ2

d∑
i=1

w2
j −

1
2

n∑
i=1

(yi − xT
iw)2.

I For σ2 = 1
nλ , same as minimizing

1
n

n∑
i=1

(xT
iw − yi)2 + λ‖w‖22,

which is the ridge regression objective!
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Example: Dartmouth data example

I Dartmouth data example, where we considered intervals for the
HS GPA variable:

(0.00, 0.25] , (0.25, 0.50] , (0.50, 0.75] , · · ·

I Use ϕ(x) = (1{x∈(0.00,0.25]},1{x∈(0.25,0.50]}, . . . ) with a linear
function

I Regularization: λ
∑d
j=1(wj − µ)2 where µ = 2.46 is mean of

College GPA values.
I What’s the Bayesian interpretation of minimizing the following

objective?

1
n

n∑
i=1

(ϕ(xi)Tw − yi)2 + λ
d∑
j=1

(wj − µ)2
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