
Machine learning lecture slides

COMS 4771 Fall 2020

0 / 52



Regression I: Linear regression



Outline

I Statistical model for regression
I College GPA example
I Ordinary least squares for linear regression
I The expected mean squared error
I Different views of ordinary least squares
I Features and linearity
I Over-fitting
I Beyond empirical risk minimization
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Figure 1: Galton board
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Real-valued predictions

I Example: Galton board
I Physical model: hard
I Statistical model: final position of ball is random

I Normal (Gaussian) distribution with mean µ and variance σ2

I Written N(µ, σ2)
I Probability density function is

pµ,σ2(y) = 1√
2πσ2

e−
(y−µ)2

2σ2 , y ∈ R.

I Goal: predict final position accurately, measure squared loss
(also called squared error)

(prediction− outcome)2

I Outcome is random, so look at expected squared loss (also
called mean squared error)
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Optimal prediction for mean squared error

I Predict ŷ ∈ R; true final position is Y (random variable) with
mean E(Y ) = µ and variance var(Y ) = E[(Y − E(Y ))2] = σ2.

I Squared error is (ŷ − Y )2.
I Bias-variance decomposition:

E[(ŷ − Y )2] = E[(ŷ − µ+ µ− Y )2]
= (ŷ − µ)2 + 2(ŷ − µ)E[(µ− Y )] + E[(µ− Y )2]
= (ŷ − µ)2 + σ2.

I This is true for any random variable Y ; don’t need normality
assumption.

I So optimal prediction is ŷ = µ.
I When parameters are unknown, can estimate from related data,

. . .
I Can also do an analysis of a plug-in prediction . . .
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Statistical model for regression

I Setting is same as for classification except:
I Label is real number, rather than {0, 1} or {1, 2, . . . ,K}
I Care about squared loss, rather than whether prediction is

correct
I Mean squared error of f :

mse(f) := E[(f(X)− Y )2],

the expected squared loss of f on random example
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Optimal prediction function for regression

I If (X,Y ) is random test example, then
optimal prediction function is

f?(x) = E[Y | X = x]

I Also called the regression function or conditional mean function
I Prediction function with smallest MSE
I Depends on conditional distribution of Y given X
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Test MSE (1)

I Just like in classification, we can use test data to estimate
mse(f̂) for a function f̂ that depends only on training data.

I IID model:
(X1, Y1), . . . , (Xn, Yn), (X ′1, Y ′1), . . . , (X ′m, Y ′m), (X,Y ) are iid
I Training examples (that you have):

S := ((X1, Y1), . . . , (Xn, Yn))
I Test examples (that you have): T := ((X ′1, Y ′1), . . . , (X ′m, Y ′m))
I Test example (that you don’t have) used to define MSE: (X,Y )

I Predictor f̂ is based only on training examples
I Hence, test examples are independent of f̂ (very

important!)
I We would like to estimate mse(f̂)
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Test MSE (2)

I Test MSE mse(f̂ , T ) = 1
m

∑m
i=1(f̂(X ′i) 6= Y ′i )2

I By law of large numbers, mse(f̂ , T )→ mse(f̂) as m→∞
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Example: College GPA

I Data from 750 Dartmouth students’ College GPA
I Mean: 2.46
I Standard deviation: 0.746

I Assume this data is iid sample from the population of
Dartmouth students (false)

I Absent any other features, best constant prediction of a
uniformly random Dartmouth student’s College GPA is
ŷ := 2.46.

Figure 2: Histogram of College GPA 9 / 52



Predicting College GPA from HS GPA (1)

I Students represented in data have High School (HS) GPA
I Maybe HS GPA is predictive of College GPA?

I Data: S := ((x1, y1), . . . , (xn, yn))
I xi is HS GPA of i-th student
I yi is College GPA of i-th student
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Figure 3: Plot of College GPA vs HS GPA
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Predicting College GPA from HS GPA (2)

I First attempt:
I Define intervals of possible HS GPAs:

(0.00, 0.25] , (0.25, 0.50] , (0.50, 0.75] , · · ·

I For each such interval I, record the mean µ̂I of the College
GPAs of students whose HS GPA falls in I.

f̂(x) :=


µ̂(0.00,0.25] if x ∈ (0.00, 0.25]
µ̂(0.25,0.50] if x ∈ (0.25, 0.50]
µ̂(0.50,0.75] if x ∈ (0.50, 0.75]

...

I (What to do about an interval I that contains no student’s HS
GPA?)
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Figure 4: Plot of mean College GPA vs binned HS GPA
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Predicting College GPA from HS GPA (3)

I Define
mse(f, S) := 1

|S|
∑

(x,y)∈S

(f(x)− y)2,

the mean squared error of predictions made by f on examples
in S.
I “mean” is with respect to the uniform distribution on examples

in S.

mse(f̂ , S) = 0.376√
mse(f̂ , S) = 0.613 < 0.746 (the standard deviation of the yi’s)

I Piece-wise constant function f̂ is an improvement over the
constant function (i.e., just predicting the mean 2.46 for all x)!
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Predicting College GPA from HS GPA (4)

I But f̂ has some quirks.
I E.g., those with HS GPA between 2.50 and 2.75 are predicted

to have a lower College GPA than those with HS GPA between
2.25 and 2.50.

I E.g., something unusual with the student who has HS GPA of
4.5
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Figure 5: Plot of mean College GPA vs binned HS GPA
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Least squares linear regression (1)

I Suppose we’d like to only consider functions with a specific
functional form, e.g., a linear function:

f(x) = mx+ θ

for m, θ ∈ R.
I Technically, x 7→ mx+ θ is linear iff θ = 0. If θ 6= 0, the

function is not linear but affine.
I Semantics: Positive m means higher HS GPA gets a higher

prediction of College GPA.
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Least squares linear regression (2)

I What is the linear function with smallest MSE on
(x1, y1), . . . , (xn, yn) ∈ R× R? This is the problem of
least squares linear regression.
I Find (m, θ) ∈ R2 to minimize

1
n

n∑
i=1

(mxi + θ − yi)2.

I Also called ordinary least squares (OLS)
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Figure 6: Plot of least squares linear regression line
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Computing OLS (1)

I Derivatives equal zero conditions (normal equations):

∂

∂θ

 1
n

n∑
i=1

(mxi + θ − yi)2

 = 2
n

n∑
i=1

(mxi + θ − yi) = 0

∂

∂m

 1
n

n∑
i=1

(mxi + θ − yi)2

 = 2
n

n∑
i=1

(mxi + θ − yi)xi = 0.

I System of two linear equations with two unknowns (m, θ).
I Define

x := 1
n

n∑
i=1

xi, x2 := 1
n

n∑
i=1

x2
i ,

xy := 1
n

n∑
i=1

xiyi, y := 1
n

n∑
i=1

yi,

so system can be re-written as
xm+ θ = y

x2m+ xθ = xy. 19 / 52



Computing OLS (2)

I Write in matrix notation:[
x 1
x2 x

] [
m
θ

]
=
[
y
xy

]
.

I Solution: (m̂, θ̂) ∈ R2 given by

m̂ := xy − x · y
x2 − x2 , θ̂ := y − xy − x · y

x2 − x2 · x.
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Computing OLS (3)

I Catch: The above solution only makes sense if x2 − x2 6= 0,
i.e., the variance of the xi’s is non-zero.

I If x2 − x2 = 0, then the matrix defining the LHS of system of
equations is singular.
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Computing OLS (4)

I In general, “derivative equals zero” is only a necessary
condition for a solution to be optimal; not necessarily a
sufficient condition!

I Theorem: Every solution to the normal equations is an
optimal solution to the least squares linear regression problem.

22 / 52



Decomposition of expected MSE (1)

I Two different functions of HS GPA for predicting College GPA.
I What makes them different?
I We care about prediction of College GPA for student we haven’t

seen before based on their HS GPA.
I IID model: (X1, Y1), . . . , (Xn, Yn), (X,Y ) are iid
I Say training examples (X1, Y1), . . . , (Xn, Yn) are used to

determine f̂ .
I What is E[mse(f̂)]?
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Decomposition of expected MSE (2)

E[mse(f̂)]

= E
[
E[(f̂(X)− Y )2 | f̂ ]

]
= E

[
E[(f̂(X)− Y )2 | f̂ , X]

]
= E

[
var(Y | X) + (f̂(X)− E[Y | X])2

]
= E

[
var(Y | X) + E[(f̂(X)− E[Y | X])2 | X]

]
= E

[
var(Y | X) + var(f̂(X) | X) + (E[f̂(X) | X]− E[Y | X])2

]
= E

[
var(Y | X)

]︸ ︷︷ ︸
unavoidable error

+E
[
var(f̂(X) | X)

]
︸ ︷︷ ︸

variability of f̂

+E
[
(E[f̂(X) | X]− E[Y | X])2

]
︸ ︷︷ ︸

approximation error of f̂

.
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Decomposition of expected MSE (3)

I First term is quantifies inherent unpredictability of Y (even
after seeing X)

I Second term measures the “variability” of f̂ due to the random
nature of training data. Depends on:
I probability distribution of training data,
I type of function being fit (e.g., piecewise constant, linear),
I method of fitting (e.g., OLS),
I etc.

I Third term quantifies how well a function produced by the
fitting procedure can approximate the regression function, even
after removing the “variability” of f̂ .
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Multivariate linear regression (1)

I For Dartmouth data, also have SAT Score for all students.
I Can we use both predictor variables (HS GPA and SAT Score)

to get an even better prediction of College GPA?
I Binning approach: instead of a 1-D grid (intervals), consider a

2-D grid (squares).
I Linear regression: a function f : R2 → R of the form

f(x) = m1x1 +m2x2 + θ

for some (m1,m2) ∈ R2 and θ ∈ R.
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Multivariate linear regression (2)

I The general case: a (homogeneous) linear function f : Rd → R
of the form

f(x) = xTw

for some w ∈ Rd.
I w is called the weight vector or coefficient vector.
I What about inhomogeneous linear functions?

I Just always include a “feature” that always has value 1. Then
the corresponding weight acts like θ from before.
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Multivariate ordinary least squares (1)

I What is the linear function with smallest MSE on
(x1, y1), . . . , (xn, yn) ∈ Rd × R?
I Find w ∈ Rd to minimize

R̂(w) := 1
n

n∑
i=1

(xT
iw − yi)2.

I Notation warning: xi ∈ Rd
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Multivariate ordinary least squares (2)

I In matrix notation:

R̂(w) := ‖Aw − b‖22

where

A := 1√
n


←− xT

1 −→
...

←− xT
n −→

 ∈ Rn×d, b := 1√
n


y1
...
yn

 ∈ Rn.

I If we put vector v ∈ Rd in the context of matrix multiplication,
it is treated as a column vector by default!

I If we want a row vector, we write vT.
I Therefore

Aw − b = 1√
n


xT

1w − y1
...

xT
nw − yn


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Figure 7: Geometric picture of least squares linear regression
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Multivariate normal equations (1)

I Like the one-dimensional case, optimal solutions are
characterized by a system of linear equations (the “derivatives
equal zero” conditions) called the normal equations:

∇w R̂(w) =


∂ R̂(w)

∂w1...
∂ R̂(w)

∂w
d

 = 2AT(Aw − b) = 0,

which is equivalent to

ATAw = ATb.
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Multivariate normal equations (2)

I If ATA is non-singular (i.e., invertible), then there is a unique
solution given by

ŵ := (ATA)−1ATb.

I If ATA is singular, then there are infinitely many solutions!

I Theorem: Every solution to the normal equations is an
optimal solution to the least squares linear regression problem.
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Algorithm for least squares linear regression

I How to solve least squares linear regression problem?
I Just solve the normal equations, a system of d linear equations

in d unknowns.
I Time complexity (naïve) of Gaussian elimination algorithm:

O(d3).
I Actually, also need to count time to form the system of

equations, which is O(nd2).
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Classical statistics view of OLS (1)

I Normal linear regression model
I Model training examples (X1, Y1), . . . , (Xn, Yn) as iid random

variables taking values in Rd × R, where

Yi | Xi = xi ∼ N(xT
iw, σ

2)

I w ∈ Rd and σ2 > 0 are the parameters of the model.
I The least squares linear regression problem is the same as the

problem of finding the maximum likelihood value for w.
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Classical statistics view of OLS (2)

I Suppose your data really does come from a distribution in this
statistical model, say, with parameters w and σ2.
I Then the function with smallest MSE is the linear function

f?(x) = xTw, and its MSE is mse(f?) = σ2.
I So estimating w is a sensible idea! (Plug-in principle. . . )
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Statistical learning view of OLS (1)

I IID model: (X1, Y1), . . . , (Xn, Yn), (X,Y ) ∼iid P are iid
random variables taking values in Rd × R
I (X,Y ) is the (unseen) “test” example

I Goal: find a (linear) function w ∈ Rd with small MSE

mse(w) = E[(XTw − Y )2].

I We cannot directly minimize mse(w) as a function of w ∈ Rd,
since it is an expectation (e.g., integral) with respect to the
unknown distribution P
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Statistical learning view of OLS (2)

I However, we have an iid sample S := ((X1, Y1), . . . , (Xn, Yn)).
I We swap out P in the definition of mse(f), and replace it with

the empirical distribution on S:

Pn(x, y) := 1
n

n∑
i=1

1{(x,y)=(xi,yi)}.

I This is the distribution that puts probability mass 1/n on the
i-th training example.

I Resulting objective function is

E[(X̃Tw − Ỹ )2] = 1
n

n∑
i=1

(XT
i w − Yi)2

where (X̃, Ỹ ) ∼ Pn.
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Statistical learning view of OLS (3)

I In some circles:
I (True/population) risk of w: R(w) := E[(XTw − Y )2]
I Empirical risk of w: R̂(w) := 1

n

∑n
i=1(XT

iw − Yi)2

I This is another instance of the plug-in principle!
I We want to minimize mse(w) but we don’t know P , so we

replace it with our estimate Pn.
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Statistical learning view of OLS (4)

I This is not specific to linear regression; also works for other
types of functions, and also other types of prediction problems,
including classification.

I For classification:
I (True/population) risk of f : R(f) := E[1{f(X) 6=Y }]
I Empirical risk of f : R̂(f) := 1

n

∑n
i=1 1{f(Xi) 6=Yi}

I All that changed is the loss function (squared loss versus
zero/one loss)

I Procedure that minimizes empirical risk:
Empirical risk minimization (ERM)
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Upgrading linear regression (1)

I Make linear regression more powerful by being creative about
features
I We are forced to do this if x is not already provided as a vector

of numbers
I Instead of using x directly, use ϕ(x) for some transformation ϕ

(possibly vector-valued)
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Upgrading linear regression (2)

I Examples:
I Affine feature expansion, e.g., ϕ(x) = (1, x), to accommodate

intercept
I Standardization, e.g., ϕ(x) = (x− µ)/σ where (µ, σ2) are

(estimates of) the mean and variance of the feature value
I Non-linear scalar transformations, e.g., ϕ(x) = ln(1 + x)
I Logical formula, e.g., ϕ(x) = (x1 ∧ x5 ∧ ¬x10) ∨ (¬x2 ∧ x7)
I Trigonometric expansion, e.g.,

ϕ(x) = (1, sin(x), cos(x), sin(2x), cos(2x), . . . )
I Polynomial expansion, e.g.,

ϕ(x) = (1, x1, . . . , xd, x
2
1, . . . , x

2
d, x1x2, . . . , xd−1xd)

I Headless neural network ϕ(x) = N(x) ∈ Rk, where
N : Rd → Rk is a map computed by a intermediate layer of a
neural network

I (Later, we’ll talk about how to “learn” N .)
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Example: Taking advantage of linearity

I Example: y is health outcome, x is body temperature
I Physician suggests relevant feature is (square) deviation from

normal body temperature (x− 98.6)2

I What if you didn’t know the magic constant 98.6? (Apparently
it is wrong in the US anyway)

I Use ϕ(x) = (1, x, x2)
I Can learn coefficients w ∈ R3 such that ϕ(x)Tw = (x− 98.6)2,

or any other quadratic polynomial in x (which could be better!)
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Example: Binning features

I Dartmouth data example, where we considered intervals for the
HS GPA variable:

(0.00, 0.25] , (0.25, 0.50] , (0.50, 0.75] , · · ·

I Use ϕ(x) = (1{x∈(0.00,0.25]},1{x∈(0.25,0.50]}, . . . ) with a linear
function

I What is ϕ(x)Tw?
I ϕ(x)Tw = wj if x is in the j-th interval.
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Effect of feature expansion on expected MSE

E[mse(f̂)]

= E
[
var(Y | X)

]︸ ︷︷ ︸
unavoidable error

+E
[
var(f̂(X) | X)

]
︸ ︷︷ ︸

variability of f̂

+E
[
(E[f̂(X) | X]− E[Y | X])2

]
︸ ︷︷ ︸

approximation error of f̂

.

I Feature expansion can help reduce the third term
(approximation error)

I But maybe at the cost of increasing the second term
(variability)
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Performance of OLS (1)

I Study in context of IID model
I (X1, Y1), . . . , (Xn, Yn), (X,Y ) are iid, and assume E[XXT] is

invertible (WLOG).
I Let w∗ denote the minimizer of mse(w) over all w ∈ Rd.

I Inductive bias assumption: mse(w∗) is small, i.e., there is a
linear function with low MSE.

I This is a fairly “weak” modeling assumption, especially
compared to the normal regression model.

I How much larger is mse(ŵ) compared to mse(w∗)?
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Performance of OLS (2)

I Theorem: In the IID model, the OLS solution ŵ satisfies

n
(
E[mse(ŵ)]−mse(w∗)

)
→ tr(cov(εW ))

as n→∞, where W = E[XXT]−1/2X and ε = Y −XTw∗.

I Corollary: If, in addition, (X,Y ) follows the normal linear
regression model Y | X = x ∼ N(xTw∗, σ2), then

n
(
E[mse(ŵ)]−mse(w∗)

)
→ σ2d,

which is more typically written as

E[mse(ŵ)]→
(

1 + d

n

)
mse(w∗).
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Linear algebraic view of OLS (1)

I Write A =

 ↑ ↑
a1 · · · ad

↓ ↓


I aj ∈ Rn is j-th column of A
I Span of a1, . . . , ad is range(A), a subspace of Rn

I Minimizing R̂(w) = ‖Aw− b‖22 over w ∈ Rd is same as finding
vector b̂ in range(A) closest to b
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Figure 8: Orthogonal projection of b onto range(A)
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Linear algebraic view of OLS (2)

I Solution b̂ is orthogonal projection of b onto range(A)
I b̂ is unique
I Residual b− b̂ is orthogonal to b̂
I To get w from b̂, solve Aw = b̂ for w.
I If rank(A) < d (always the case if n < d), then infinitely-many

ways to write b̂ as linear combination of a1, . . . , ad.
I Upshot: Uniqueness of least squares solution requires n ≥ d,

and n < d guarantees non-uniqueness!
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Over-fitting (1)

I In the IID model, over-fitting is the phenomenon where the
true risk is much worse than the empirical risk.
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Over-fitting (2)

I Example:
I ϕ(x) = (1, x, x2, . . . , xk), degree-k polynomial expansion
I Dimension is d = k + 1
I Any function of ≤ k + 1 points can be interpolated by

polynomial of degree ≤ k
I So if n ≤ k + 1 = d, least squares solution ŵ will have zero

empirical risk, regardless of its true risk (assuming no two
training examples with distinct xi’s have different yi’s).
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Figure 9: Polynomial interpolation

51 / 52



Beyond empirical risk minimization

I Recall plug-in principle
I Want to minimize risk with respect to (unavailable) P ; use Pn

instead
I What if we can’t regard data as iid from P?

I Example: Suppose we know P = 1
2M + 1

2F
(mixture distribution)

I We get size n1 iid sample from M , and size n2 iid sample from
F , n2 � n1

I How to implement plug-in principle?
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