Regression I: Linear regression
Outline

- Statistical model for regression
- College GPA example
- Ordinary least squares for linear regression
- The expected mean squared error
- Different views of ordinary least squares
- Features and linearity
- Over-fitting
- Beyond empirical risk minimization
Figure 1: Galton board
Real-valued predictions

- Example: Galton board
- Physical model: hard
- Statistical model: final position of ball is random
 - Normal (Gaussian) distribution with mean μ and variance σ^2
 - Written $N(\mu, \sigma^2)$
 - Probability density function is
 \[p_{\mu, \sigma^2}(y) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(y-\mu)^2}{2\sigma^2}}, \quad y \in \mathbb{R}. \]

- Goal: predict final position accurately, measure squared loss (also called squared error)
 \[(\text{prediction} - \text{outcome})^2 \]

- Outcome is random, so look at expected squared loss (also called mean squared error)
Optimal prediction for mean squared error

- Predict $\hat{y} \in \mathbb{R}$; true final position is Y (random variable) with mean $\mathbb{E}(Y) = \mu$ and variance $\text{var}(Y) = \mathbb{E}[(Y - \mathbb{E}(Y))^2] = \sigma^2$.
- Squared error is $(\hat{y} - Y)^2$.
- **Bias-variance decomposition:**

 \[
 \mathbb{E}[(\hat{y} - Y)^2] = \mathbb{E}[(\hat{y} - \mu + \mu - Y)^2]
 = (\hat{y} - \mu)^2 + 2(\hat{y} - \mu)\mathbb{E}[(\mu - Y)] + \mathbb{E}[(\mu - Y)^2]
 = (\hat{y} - \mu)^2 + \sigma^2.
 \]

 - This is true for any random variable Y; don’t need normality assumption.
- So optimal prediction is $\hat{y} = \mu$.
- When parameters are unknown, can estimate from related data, ...
- Can also do an analysis of a plug-in prediction ...
Setting is same as for classification except:

- Label is real number, rather than \(\{0, 1\} \) or \(\{1, 2, \ldots, K\} \)
- Care about squared loss, rather than whether prediction is correct

Mean squared error of \(f \):

\[
\text{mse}(f) := \mathbb{E}[(f(X) - Y)^2],
\]

the expected squared loss of \(f \) on random example.
Optimal prediction function for regression

- If \((X, Y)\) is random test example, then **optimal prediction function** is

\[
f^*(x) = \mathbb{E}[Y \mid X = x]
\]

- Also called the **regression function** or **conditional mean function**
- Prediction function with smallest MSE
- Depends on conditional distribution of \(Y\) given \(X\)
Just like in classification, we can use test data to estimate \(\text{mse}(\hat{f}) \) for a function \(\hat{f} \) that depends only on training data.

IID model:

\[(X_1, Y_1), \ldots, (X_n, Y_n), (X'_1, Y'_1), \ldots, (X'_m, Y'_m), (X, Y) \] are iid

- Training examples (that you have):
 \[S := ((X_1, Y_1), \ldots, (X_n, Y_n))\]

- Test examples (that you have):
 \[T := ((X'_1, Y'_1), \ldots, (X'_m, Y'_m))\]

- Test example (that you don’t have) used to define MSE:
 \[(X, Y)\]

Predictor \(\hat{f} \) is based only on training examples

Hence, **test examples are independent of \(\hat{f} \)** (very important!)

We would like to estimate \(\text{mse}(\hat{f}) \)
Test MSE (2)

- Test MSE \(\text{mse}(\hat{f}, T) = \frac{1}{m} \sum_{i=1}^{m} (\hat{f}(X'_i) - Y'_i)^2 \)

- By law of large numbers, \(\text{mse}(\hat{f}, T) \to \text{mse}(\hat{f}) \) as \(m \to \infty \)
Example: College GPA

- Data from 750 Dartmouth students’ College GPA
 - Mean: 2.46
 - Standard deviation: 0.746
- Assume this data is iid sample from the population of Dartmouth students (false)
- Absent any other features, best constant prediction of a uniformly random Dartmouth student’s College GPA is \(\hat{y} := 2.46 \).

Figure 2: Histogram of College GPA
Students represented in data have High School (HS) GPA

Maybe HS GPA is predictive of College GPA?

Data: $S := ((x_1, y_1), \ldots, (x_n, y_n))$

x_i is HS GPA of i-th student

y_i is College GPA of i-th student
Figure 3: Plot of College GPA vs HS GPA
First attempt:

Define intervals of possible HS GPAs:

\[(0.00, 0.25], \quad (0.25, 0.50], \quad (0.50, 0.75], \quad \cdots\]

For each such interval \(I\), record the mean \(\hat{\mu}_I\) of the College GPAs of students whose HS GPA falls in \(I\).

\[
\hat{f}(x) := \begin{cases}
\hat{\mu}_{(0.00,0.25]} & \text{if } x \in (0.00, 0.25] \\
\hat{\mu}_{(0.25,0.50]} & \text{if } x \in (0.25, 0.50] \\
\hat{\mu}_{(0.50,0.75]} & \text{if } x \in (0.50, 0.75] \\
\vdots & \vdots
\end{cases}
\]

(What to do about an interval \(I\) that contains no student’s HS GPA?)
Figure 4: Plot of mean College GPA vs binned HS GPA
Define

\[
mse(f, S) := \frac{1}{|S|} \sum_{(x,y) \in S} (f(x) - y)^2,
\]

the mean squared error of predictions made by \(f \) on examples in \(S \).

- “mean” is with respect to the uniform distribution on examples in \(S \).

\[
mse(\hat{f}, S) = 0.376
\]

\[
\sqrt{mse(\hat{f}, S)} = 0.613 < 0.746 \text{ (the standard deviation of the } y_i \text{'s)}
\]

- Piece-wise constant function \(\hat{f} \) is an improvement over the constant function (i.e., just predicting the mean 2.46 for all \(x \))!
Predicting College GPA from HS GPA (4)

- But f has some quirks.
- E.g., those with HS GPA between 2.50 and 2.75 are predicted to have a lower College GPA than those with HS GPA between 2.25 and 2.50.
- E.g., something unusual with the student who has HS GPA of 4.5

![Figure 5: Plot of mean College GPA vs binned HS GPA](image-url)
Suppose we’d like to only consider functions with a specific functional form, e.g., a linear function:

\[f(x) = mx + \theta \]

for \(m, \theta \in \mathbb{R} \).

- Technically, \(x \mapsto mx + \theta \) is linear iff \(\theta = 0 \). If \(\theta \neq 0 \), the function is not linear but affine.
- Semantics: Positive \(m \) means higher HS GPA gets a higher prediction of College GPA.
What is the linear function with smallest MSE on \((x_1, y_1), \ldots, (x_n, y_n) \in \mathbb{R} \times \mathbb{R}\)? This is the problem of **least squares linear regression**.

Find \((m, \theta) \in \mathbb{R}^2\) to minimize

\[
\frac{1}{n} \sum_{i=1}^{n} (mx_i + \theta - y_i)^2.
\]

Also called **ordinary least squares** (OLS).
Figure 6: Plot of least squares linear regression line
Computing OLS (1)

- Derivatives equal zero conditions \textbf{(normal equations)}:

\[
\frac{\partial}{\partial \theta} \left\{ \frac{1}{n} \sum_{i=1}^{n} (mx_i + \theta - y_i)^2 \right\} = \frac{2}{n} \sum_{i=1}^{n} (mx_i + \theta - y_i) = 0
\]

\[
\frac{\partial}{\partial m} \left\{ \frac{1}{n} \sum_{i=1}^{n} (mx_i + \theta - y_i)^2 \right\} = \frac{2}{n} \sum_{i=1}^{n} (mx_i + \theta - y_i)x_i = 0.
\]

- System of two linear equations with two unknowns \((m, \theta)\).
- Define

\[
\bar{x} := \frac{1}{n} \sum_{i=1}^{n} x_i, \quad \bar{x}^2 := \frac{1}{n} \sum_{i=1}^{n} x_i^2,
\]

\[
\bar{xy} := \frac{1}{n} \sum_{i=1}^{n} x_i y_i, \quad \bar{y} := \frac{1}{n} \sum_{i=1}^{n} y_i,
\]

so system can be re-written as

\[
\bar{x}m + \theta = \bar{y}
\]

\[
\bar{x}^2 m + \bar{x} \theta = \bar{xy}.
\]
Computing OLS (2)

- Write in matrix notation:

\[
\begin{bmatrix}
\frac{x}{x^2} & 1 \\
\frac{x}{x^2} & \frac{x}{x^2}
\end{bmatrix}
\begin{bmatrix}
m \\
\theta
\end{bmatrix}
=
\begin{bmatrix}
\frac{y}{xy} \\
\frac{y}{xy}
\end{bmatrix}.
\]

- Solution: \((\hat{m}, \hat{\theta}) \in \mathbb{R}^2\) given by

\[
\hat{m} := \frac{xy - x \cdot \bar{y}}{x^2 - \bar{x}^2}, \quad \hat{\theta} := \bar{y} - \frac{xy - x \cdot \bar{y}}{x^2 - \bar{x}^2} \cdot \bar{x}.
\]
Computing OLS (3)

▶ Catch: The above solution only makes sense if $x^2 - \bar{x}^2 \neq 0$, i.e., the variance of the x_i’s is non-zero.

▶ If $x^2 - \bar{x}^2 = 0$, then the matrix defining the LHS of system of equations is singular.
In general, “derivative equals zero” is only a necessary condition for a solution to be optimal; not necessarily a sufficient condition!

Theorem: Every solution to the normal equations is an optimal solution to the least squares linear regression problem.
Decomposition of expected MSE (1)

- Two different functions of HS GPA for predicting College GPA.
 - What makes them different?
 - We care about prediction of College GPA for student we haven’t seen before based on their HS GPA.
- IID model: $(X_1, Y_1), \ldots, (X_n, Y_n), (X, Y)$ are iid
- Say training examples $(X_1, Y_1), \ldots, (X_n, Y_n)$ are used to determine \hat{f}.
- What is $\mathbb{E}[\text{mse}(\hat{f})]$?
Decomposition of expected MSE (2)

\[\mathbb{E}[\text{mse}(\hat{f})] \]
\[= \mathbb{E} \left[\mathbb{E}[(\hat{f}(X) - Y)^2 | \hat{f}] \right] \]
\[= \mathbb{E} \left[\mathbb{E}[(\hat{f}(X) - Y)^2 | \hat{f}, X] \right] \]
\[= \mathbb{E} \left[\text{var}(Y | X) + (\hat{f}(X) - \mathbb{E}[Y | X])^2 \right] \]
\[= \mathbb{E} \left[\text{var}(Y | X) + \mathbb{E}[(\hat{f}(X) - \mathbb{E}[Y | X])^2 | X] \right] \]
\[= \mathbb{E} \left[\text{var}(Y | X) + \text{var}(\hat{f}(X) | X) + (\mathbb{E}[\hat{f}(X) | X] - \mathbb{E}[Y | X])^2 \right] \]
\[= \underbrace{\mathbb{E} [\text{var}(Y | X)]}_{\text{unavoidable error}} + \underbrace{\mathbb{E} [\text{var}(\hat{f}(X) | X)]}_{\text{variability of } \hat{f}} + \underbrace{\mathbb{E} [(\mathbb{E}[\hat{f}(X) | X] - \mathbb{E}[Y | X])^2]}_{\text{approximation error of } \hat{f}} \]
Decomposition of expected MSE (3)

- First term is quantifies inherent unpredictability of Y (even after seeing X)
- Second term measures the “variability” of \hat{f} due to the random nature of training data. Depends on:
 - probability distribution of training data,
 - type of function being fit (e.g., piecewise constant, linear),
 - method of fitting (e.g., OLS),
 - etc.
- Third term quantifies how well a function produced by the fitting procedure can approximate the regression function, even after removing the “variability” of \hat{f}.
For Dartmouth data, also have SAT Score for all students.

- Can we use both *predictor variables* (HS GPA and SAT Score) to get an even better prediction of College GPA?
- Binning approach: instead of a 1-D grid (intervals), consider a 2-D grid (squares).

Linear regression: a function $f : \mathbb{R}^2 \to \mathbb{R}$ of the form

$$f(x) = m_1 x_1 + m_2 x_2 + \theta$$

for some $(m_1, m_2) \in \mathbb{R}^2$ and $\theta \in \mathbb{R}$.
Multivariate linear regression (2)

- The general case: a (homogeneous) linear function \(f : \mathbb{R}^d \to \mathbb{R} \) of the form
 \[
 f(x) = x^T w
 \]
 for some \(w \in \mathbb{R}^d \).

- \(w \) is called the **weight vector** or **coefficient vector**.

- What about inhomogeneous linear functions?
 - Just always include a “feature” that always has value 1. Then the corresponding weight acts like \(\theta \) from before.
What is the linear function with smallest MSE on
\((x_1, y_1), \ldots, (x_n, y_n) \in \mathbb{R}^d \times \mathbb{R}\)?

Find \(w \in \mathbb{R}^d\) to minimize

\[
\hat{R}(w) := \frac{1}{n} \sum_{i=1}^{n} (x_i^T w - y_i)^2.
\]

Notation warning: \(x_i \in \mathbb{R}^d\)
Multivariate ordinary least squares (2)

▶ In matrix notation:

$$\hat{R}(w) := \|Aw - b\|_2^2$$

where

$$A := \frac{1}{\sqrt{n}} \begin{bmatrix} x_1^\top & \cdots & x_n^\top \end{bmatrix} \in \mathbb{R}^{n \times d}, \quad b := \frac{1}{\sqrt{n}} \begin{bmatrix} y_1 \\ \vdots \\ y_n \end{bmatrix} \in \mathbb{R}^n.$$

▶ If we put vector $v \in \mathbb{R}^d$ in the context of matrix multiplication, it is treated as a column vector by default!

▶ If we want a row vector, we write v^\top.

▶ Therefore

$$Aw - b = \frac{1}{\sqrt{n}} \begin{bmatrix} x_1^\top w - y_1 \\ \vdots \\ x_n^\top w - y_n \end{bmatrix}$$
Figure 7: Geometric picture of least squares linear regression
Like the one-dimensional case, optimal solutions are characterized by a system of linear equations (the “derivatives equal zero” conditions) called the *normal equations*:

\[
\nabla_w \hat{R}(w) = \begin{bmatrix}
\frac{\partial \hat{R}(w)}{\partial w_1} \\
\vdots \\
\frac{\partial \hat{R}(w)}{\partial w_d}
\end{bmatrix} = 2A^T(Aw - b) = 0,
\]

which is equivalent to

\[A^T Aw = A^T b.\]
If $A^T A$ is non-singular (i.e., invertible), then there is a unique solution given by

$$\hat{\omega} := (A^T A)^{-1} A^T b.$$

If $A^T A$ is singular, then there are infinitely many solutions!

Theorem: Every solution to the normal equations is an optimal solution to the least squares linear regression problem.
Algorithm for least squares linear regression

How to solve least squares linear regression problem?

- Just solve the normal equations, a system of d linear equations in d unknowns.
- Time complexity (naïve) of Gaussian elimination algorithm: $O(d^3)$.
- Actually, also need to count time to form the system of equations, which is $O(nd^2)$.
Normal linear regression model

Model training examples $(X_1, Y_1), \ldots, (X_n, Y_n)$ as iid random variables taking values in $\mathbb{R}^d \times \mathbb{R}$, where

$$Y_i \mid X_i = x_i \sim \mathcal{N}(x_i^Tw, \sigma^2)$$

- $w \in \mathbb{R}^d$ and $\sigma^2 > 0$ are the parameters of the model.
- The least squares linear regression problem is the same as the problem of finding the maximum likelihood value for w.
Suppose your data really does come from a distribution in this statistical model, say, with parameters w and σ^2.

Then the function with smallest MSE is the linear function $f^*(x) = x^T w$, and its MSE is $\text{mse}(f^*) = \sigma^2$.

So estimating w is a sensible idea! (Plug-in principle...)
Statistical learning view of OLS (1)

- IID model: \((X_1, Y_1), \ldots, (X_n, Y_n), (X, Y) \sim_{iid} P\) are iid random variables taking values in \(\mathbb{R}^d \times \mathbb{R}\)
 - \((X, Y)\) is the (unseen) “test” example
- Goal: find a (linear) function \(w \in \mathbb{R}^d\) with small MSE

\[
\text{mse}(w) = \mathbb{E}[(X^T w - Y)^2].
\]

- We cannot directly minimize \(\text{mse}(w)\) as a function of \(w \in \mathbb{R}^d\), since it is an expectation (e.g., integral) with respect to the unknown distribution \(P\)
However, we have an iid sample $S := ((X_1, Y_1), \ldots, (X_n, Y_n))$. We swap out P in the definition of $\text{mse}(f)$, and replace it with the empirical distribution on S:

$$P_n(x, y) := \frac{1}{n} \sum_{i=1}^{n} 1\{ (x,y) = (x_i, y_i) \}.$$

This is the distribution that puts probability mass $1/n$ on the i-th training example.

Resulting objective function is

$$\mathbb{E}[(\tilde{X}^\top w - \tilde{Y})^2] = \frac{1}{n} \sum_{i=1}^{n} (X_i^\top w - Y_i)^2$$

where $(\tilde{X}, \tilde{Y}) \sim P_n$.
In some circles:

- **(True/population) risk** of \(w \): \(R(w) := \mathbb{E}[(X^T w - Y)^2] \)
- **Empirical risk** of \(w \): \(\hat{R}(w) := \frac{1}{n} \sum_{i=1}^{n} (X_i^T w - Y_i)^2 \)

This is another instance of the plug-in principle!

- We want to minimize \(\text{mse}(w) \) but we don’t know \(P \), so we replace it with our estimate \(P_n \).
This is not specific to linear regression; also works for other types of functions, and also other types of prediction problems, including classification.

For classification:

- **(True/population) risk** of f: $\mathcal{R}(f) := \mathbb{E}[\mathbf{1}_{\{f(X) \neq Y\}}]$
- **Empirical risk** of f: $\hat{\mathcal{R}}(f) := \frac{1}{n} \sum_{i=1}^{n} \mathbf{1}_{\{f(X_i) \neq Y_i\}}$
- All that changed is the **loss function** (squared loss versus zero/one loss)

Procedure that minimizes empirical risk:

Empirical risk minimization (**ERM**)
Upgrading linear regression (1)

- Make linear regression more powerful by being creative about features
 - We are forced to do this if x is not already provided as a vector of numbers
- Instead of using x directly, use $\varphi(x)$ for some transformation φ (possibly vector-valued)
Upgrading linear regression (2)

- Examples:
 - Affine feature expansion, e.g., \(\varphi(x) = (1, x) \), to accommodate intercept
 - Standardization, e.g., \(\varphi(x) = (x - \mu)/\sigma \) where \((\mu, \sigma^2) \) are (estimates of) the mean and variance of the feature value
 - Non-linear scalar transformations, e.g., \(\varphi(x) = \ln(1 + x) \)
 - Logical formula, e.g., \(\varphi(x) = (x_1 \land x_5 \land \neg x_{10}) \lor (\neg x_2 \land x_7) \)
 - Trigonometric expansion, e.g.,
 \[
 \varphi(x) = (1, \sin(x), \cos(x), \sin(2x), \cos(2x), \ldots)
 \]
 - Polynomial expansion, e.g.,
 \[
 \varphi(x) = (1, x_1, \ldots, x_d, x_1^2, \ldots, x_d^2, x_1x_2, \ldots, x_1x_d, \ldots, x_{d-1}x_d)
 \]
 - **Headless neural network** \(\varphi(x) = N(x) \in \mathbb{R}^k \), where \(N: \mathbb{R}^d \to \mathbb{R}^k \) is a map computed by a intermediate layer of a neural network
 - (Later, we’ll talk about how to “learn” \(N \).)
Example: Taking advantage of linearity

- Example: y is health outcome, x is body temperature
 - Physician suggests relevant feature is (square) deviation from normal body temperature $(x - 98.6)^2$
 - What if you didn’t know the magic constant 98.6? (Apparently it is wrong in the US anyway)
 - Use $\varphi(x) = (1, x, x^2)$
 - Can learn coefficients $w \in \mathbb{R}^3$ such that $\varphi(x)^T w = (x - 98.6)^2$, or any other quadratic polynomial in x (which could be better!)
Example: Binning features

- Dartmouth data example, where we considered intervals for the HS GPA variable:

\[(0.00, 0.25], \ (0.25, 0.50], \ (0.50, 0.75], \ \cdots\]

- Use \(\varphi(x) = (1_{x \in (0.00, 0.25]}, 1_{x \in (0.25, 0.50]}, \cdots)\) with a linear function

- What is \(\varphi(x)^T w\)?
 - \(\varphi(x)^T w = w_j\) if \(x\) is in the \(j\)-th interval.
Effect of feature expansion on expected MSE

$$\mathbb{E}[\text{mse}(\hat{f})]$$

$$= \mathbb{E} \left[\text{var}(Y \mid X) \right] + \mathbb{E} \left[\text{var}(\hat{f}(X) \mid X) \right] + \mathbb{E} \left[(\mathbb{E}[\hat{f}(X) \mid X] - \mathbb{E}[Y \mid X])^2 \right]$$

- **unavoidable error**
- **variability of $$\hat{f}$$**
- **approximation error of $$\hat{f}$$**

- Feature expansion can help reduce the third term (approximation error)
- But maybe at the cost of increasing the second term (variability)
Performance of OLS (1)

- Study in context of IID model
- \((X_1, Y_1), \ldots, (X_n, Y_n), (X, Y)\) are iid, and assume \(\mathbb{E}[XX^T]\) is invertible (WLOG).
- Let \(w^*\) denote the minimizer of \(\text{mse}(w)\) over all \(w \in \mathbb{R}^d\).
 - Inductive bias assumption: \(\text{mse}(w^*)\) is small, i.e., there is a linear function with low MSE.
 - This is a fairly “weak” modeling assumption, especially compared to the normal regression model.
- How much larger is \(\text{mse}(\hat{w})\) compared to \(\text{mse}(w^*)\)?
Theorem: In the IID model, the OLS solution \(\hat{w} \) satisfies
\[
n (\mathbb{E}[\text{mse}(\hat{w})] - \text{mse}(w^*)) \to \text{tr}(\text{cov}(\varepsilon W))
\]
as \(n \to \infty \), where \(W = \mathbb{E}[XX^T]^{-1/2}X \) and \(\varepsilon = Y - X^T w^* \).

Corollary: If, in addition, \((X, Y)\) follows the normal linear regression model \(Y \mid X = x \sim \mathcal{N}(x^Tw^*, \sigma^2) \), then
\[
n (\mathbb{E}[\text{mse}(\hat{w})] - \text{mse}(w^*)) \to \sigma^2 d
\]
which is more typically written as
\[
\mathbb{E}[\text{mse}(\hat{w})] \to \left(1 + \frac{d}{n}\right)\text{mse}(w^*).
\]
Linear algebraic view of OLS (1)

Write $A = \begin{bmatrix} \uparrow \cdots \uparrow \\ a_1 \cdots a_d \end{bmatrix}$

- $a_j \in \mathbb{R}^n$ is j-th column of A
- Span of a_1, \ldots, a_d is $\text{range}(A)$, a subspace of \mathbb{R}^n
- Minimizing $\hat{R}(w) = \|Aw - b\|_2^2$ over $w \in \mathbb{R}^d$ is same as finding vector \hat{b} in $\text{range}(A)$ closest to b
Figure 8: Orthogonal projection of b onto $\text{range}(A)$
Solution \hat{b} is **orthogonal projection** of b onto $\text{range}(A)$

- \hat{b} is unique
- *Residual* $b - \hat{b}$ is orthogonal to \hat{b}
- To get w from \hat{b}, solve $Aw = \hat{b}$ for w.
- If $\text{rank}(A) < d$ (always the case if $n < d$), then infinitely-many ways to write \hat{b} as linear combination of a_1, \ldots, a_d.

- Upshot: Uniqueness of least squares solution requires $n \geq d$, and $n < d$ guarantees non-uniqueness!
Over-fitting (1)

- In the IID model, **over-fitting** is the phenomenon where the true risk is much worse than the empirical risk.
Example:

- \(\phi(x) = (1, x, x^2, \ldots, x^k) \), degree-\(k \) polynomial expansion
- Dimension is \(d = k + 1 \)
- Any function of \(\leq k + 1 \) points can be interpolated by polynomial of degree \(\leq k \)
- So if \(n \leq k + 1 = d \), least squares solution \(\hat{w} \) will have zero empirical risk, regardless of its true risk (assuming no two training examples with distinct \(x_i \)'s have different \(y_i \)'s).

![Figure 9: Polynomial interpolation](image)
Beyond empirical risk minimization

- Recall plug-in principle
 - Want to minimize risk with respect to (unavailable) P; use P_n instead

- What if we can’t regard data as iid from P?
 - Example: Suppose we know $P = \frac{1}{2}M + \frac{1}{2}F$ (mixture distribution)
 - We get size n_1 iid sample from M, and size n_2 iid sample from F, $n_2 \ll n_1$

- How to implement plug-in principle?