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Figure 1: Galton board
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Real-valued predictions

» Example: Galton board
» Physical model: hard
» Statistical model: final position of ball is random
» Normal (Gaussian) distribution with mean p and variance o

> Written N(u, 0?)
» Probability density function is

2

1 _(yfu)2
p;A,UZ (y) = W

» Goal: predict final position accurately, measure squared loss
(also called squared error)

(prediction — outcome)?

» Outcome is random, so look at expected squared loss (also
called mean squared error)
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Optimal prediction for mean squared error

» Predict § € R; true final position is Y (random variable) with
mean E(Y) = p and variance var(Y) = E[(Y — E(Y))?] = o2

» Squared error is (§ — Y)2.

» Bias-variance decomposition:

E[()-Y) ] =E[(§ —p+pn—Y)
§—m)?+20 - wE[(u—Y)]+E[(n—Y)%
§—p)?+a’.

» This is true for any random variable Y’; don’t need normality
assumption.

» So optimal prediction is § = pu.
When parameters are unknown, can estimate from related data,

» Can also do an analysis of a plug-in prediction ...
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Statistical model for regression

P Setting is same as for classification except:
» Label is real number, rather than {0,1} or {1,2,..., K}
» Care about squared loss, rather than whether prediction is
correct
» Mean squared error of f:

mse(f) == E[(f(X) —Y)?],

the expected squared loss of f on random example
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Optimal prediction function for regression

» If (X,Y) is random test example, then
optimal prediction function is

F@) =Bl | X =a

» Also called the regression function or conditional mean function
» Prediction function with smallest MSE
» Depends on conditional distribution of Y given X
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Test MSE (1)

>

>

Just like in classification, we can use test data to estimate
mse(f) for a function f that depends only on training data.
1D model:
(X17 Yl)a ) (Xm Yn)v (X{> Yll)> T (X;m Y,;l), (X7Y) are iid
» Training examples (that you have):
S = (X1, Y1),..., (X, Y))
» Test examples (that you have): T := ((X{,Y{),...,(X],,Y.)))

m? m

> Test example (that you don't have) used to define MSE: (X,Y)
Predictor f is based only on training examples
Hence, test examples are independent of f (very
important!)
We would like to estimate mse(f)
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» Test MSE mse(f, T)= % Iil(f(le) # Y;/)z

> By law of large numbers, mse(f,T) — mse(f) as m — oo
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Example: College GPA

» Data from 750 Dartmouth students’ College GPA
> Mean: 2.46
» Standard deviation: 0.746
» Assume this data is iid sample from the population of
Dartmouth students (false)
» Absent any other features, best constant prediction of a
uniformly random Dartmouth student’s College GPA is
§ = 2.46.
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Figure 2: Histogram of College GPA 9/52



Predicting College GPA from HS GPA (1)

» Students represented in data have High School (HS) GPA
» Maybe HS GPA is predictive of College GPA?
» Data: S := ((x1,91),---,(Tn,Yn))

» 1, is HS GPA of i-th student
» y; is College GPA of i-th student
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Figure 3: Plot of College GPA vs HS GPA
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Predicting College GPA from HS GPA (2)

> First attempt:
» Define intervals of possible HS GPAs:

(0.00,0.25], (0.25,0.50], (0.50,0.75],

» For each such interval I, record the mean iy of the College
GPAs of students whose HS GPA falls in 1.

f1(0.00,0.25) if = € (0.00,0.25]
s fi0.25,0.50 if € (0.25,0.50]
)= fos0os  if @ € (0.50,0.75]

» (What to do about an interval I that contains no student’s HS
GPA?)
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Figure 4: Plot of mean College GPA vs binned HS GPA
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Predicting College GPA from HS GPA (3)

» Define 1
. 2
mse(f, S) = 5] Z (f(z) —y)7,
|51 (zy)es
the mean squared error of predictions made by f on examples
in S.
» “mean” is with respect to the uniform distribution on examples
in S.

mse(f, S)=10.376
\/mse(f,S) = 0.613 < 0.746 (the standard deviation of the y;'s)

» Piece-wise constant function f is an improvement over the
constant function (i.e., just predicting the mean 2.46 for all z)!
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Predicting College GPA from HS GPA (4)

> But f has some quirks.

» E.g., those with HS GPA between 2.50 and 2.75 are predicted
to have a lower College GPA than those with HS GPA between
2.25 and 2.50.

» E.g., something unusual with the student who has HS GPA of
4.5
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Figure 5: Plot of mean College GPA vs binned HS GPA
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Least squares linear regression (1)

» Suppose we'd like to only consider functions with a specific
functional form, e.g., a linear function:

flz)=mz+0

for m,0 € R.

» Technically, z — mx + 0 is linear iff 6 = 0. If § £ 0, the
function is not linear but affine.

» Semantics: Positive m means higher HS GPA gets a higher
prediction of College GPA.
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Least squares linear regression (2)

» What is the linear function with smallest MSE on
(1,Y1)s - (Tn,yn) € R x R? This is the problem of
least squares linear regression.

» Find (m,0) € R? to minimize

1 n
- z:(m:rZ + 60— yi)Q.
=1

» Also called ordinary least squares (OLS)

17/52



45

3.5

4.5

1
L
@

@

PR

N ~—
vdD 869100

—

05

HS GPA

Figure 6: Plot of least squares linear regression line
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Computing OLS (1)

» Derivatives equal zero conditions (normal equations):

0 |1 2

= *5 i+ 0 —y)? Z*E i — i) =
50 ni:l(mx—i— Yi) ni:l(mx +60—y)=0
0 1& 2.2

—{=> it 0—u) == i+0—yi)z, =0.
5\ i:1(mx + Yi) - Z‘:l(ma: +60—y)x; =0

» System of two linear equations with two unknowns (m, 8).

» Define
_ 1 D
x::Ein, x2::Hin,
i i=1

.1 I
Ty ::721'1'%’ yi:*Zyi,
ns "=
so system can be re-written as
Tm+0=7

22m + T = 77. 19/52



» Write in matrix notation:

EEIHE
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Computing OLS (3)

» Catch: The above solution only makes sense if 72 — 72 #0,
i.e., the variance of the x;'s is non-zero.

> If 22 — 72 = 0, then the matrix defining the LHS of system of
equations is singular.
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Computing OLS (4)

P In general, “derivative equals zero” is only a necessary
condition for a solution to be optimal; not necessarily a
sufficient condition!

» Theorem: Every solution to the normal equations is an
optimal solution to the least squares linear regression problem.
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Decomposition of expected MSE (1)

» Two different functions of HS GPA for predicting College GPA.
> What makes them different?
» \We care about prediction of College GPA for student we haven't

seen before based on their HS GPA.
» |ID model: (X1,Y1),...,(Xn,Yn), (X,Y) areiid
» Say training examples (X1,Y1),...,(X,,Y,) are used to
determine f
> What is E[mse(f)]?
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Decomposition of expected MSE (2)

E[mse(/)]

=E [E[(f(X) - Y)?| f]]

= E [E[(f(X) - >2|fX1]

= E [var(Y | X) + (F(X) - E[Y | X])?]

=E [var(Y | X) + E[(f(X) - E[Y | X])*| X]|
(Y | X)

=E [var(Y | X) +var(f(X) | X) + (E[f(X) | X] —E[Y | X])?]
= E [var(Y | X)] +E [var(f(X) | X)| +E [(E[f(X) | X] - E[Y | X])*
N————

unavoidable error

variability of f approximation error of f
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Decomposition of expected MSE (3)

» First term is quantifies inherent unpredictability of Y (even
after seeing X)
» Second term measures the “variability” of f due to the random
nature of training data. Depends on:
» probability distribution of training data,
> type of function being fit (e.g., piecewise constant, linear),
» method of fitting (e.g., OLS),
> etc.
» Third term quantifies how well a function produced by the
fitting procedure can approximate the regression function, even
after removing the “variability” of f.
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Multivariate linear regression (1)

» For Dartmouth data, also have SAT Score for all students.
» Can we use both predictor variables (HS GPA and SAT Score)
to get an even better prediction of College GPA?
» Binning approach: instead of a 1-D grid (intervals), consider a
2-D grid (squares).
> Linear regression: a function f: R? — R of the form

f(d?) = mix1 + moxo + 0

for some (my,m2) € R? and 6 € R.
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Multivariate linear regression (2)

» The general case: a (homogeneous) linear function f: R? — R
of the form
f(z)=z"w

for some w € R%.
» w is called the weight vector or coefficient vector.
» What about inhomogeneous linear functions?

» Just always include a “feature” that always has value 1. Then
the corresponding weight acts like 6 from before.
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Multivariate ordinary least squares (1)

» What is the linear function with smallest MSE on
(x1,91), -, (Tn,yn) € R x R?
» Find w € R? to minimize

» Notation warning: z; € R¢
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Multivariate ordinary least squares (2)

» In matrix notation:
R(w) = || Aw — b|3
where

— x] — ) 1
: eR™ pi=—|:| eR™
) \/ﬁ .

¢ x; ? Yn

A::ﬁ

> If we put vector v € R? in the context of matrix multiplication,
it is treated as a column vector by default!
> If we want a row vector, we write v".
» Therefore

Tiw — Y1
1 1

Aw —b=—
TR

T
LTpW — Yn
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Multivariate normal equations (1)

» Like the one-dimensional case, optimal solutions are
characterized by a system of linear equations (the “derivatives
equal zero" conditions) called the normal equations:

VeRw)=| : | =24T(Aw—1b) =0,

which is equivalent to

ATAw = A"b.
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Multivariate normal equations (2)

» If ATA is non-singular (i.e., invertible), then there is a unique
solution given by

= (ATA) 1A

> If ATA is singular, then there are infinitely many solutions!

» Theorem: Every solution to the normal equations is an
optimal solution to the least squares linear regression problem.

32/52



Algorithm for least squares linear regression

> How to solve least squares linear regression problem?
» Just solve the normal equations, a system of d linear equations
in d unknowns.
» Time complexity (naive) of Gaussian elimination algorithm:
O(d?).
» Actually, also need to count time to form the system of
equations, which is O(nd?).
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Classical statistics view of OLS (1)

» Normal linear regression model
» Model training examples (X1,Y7),...,(X,,Y,) as iid random
variables taking values in R? x R, where

Y; | Xi = x; ~ N(a]w, 0?)

» w e R? and o2 > 0 are the parameters of the model.

» The least squares linear regression problem is the same as the
problem of finding the maximum likelihood value for w.
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Classical statistics view of OLS (2)

» Suppose your data really does come from a distribution in this
statistical model, say, with parameters w and o?.

» Then the function with smallest MSE is the linear function
f*(z) = 27w, and its MSE is mse(f*) = o2.
> So estimating w is a sensible idea! (Plug-in principle...)
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Statistical learning view of OLS (1)

» IID model: (X1,Y1),...,(Xn,Yn), (X,Y) ~yq P areiid
random variables taking values in R? x R
> (X,Y) is the (unseen) “test” example
» Goal: find a (linear) function w € R? with small MSE

mse(w) = E[(X w — Y)?.

» We cannot directly minimize mse(w) as a function of w € R,
since it is an expectation (e.g., integral) with respect to the
unknown distribution P
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Statistical learning view of OLS (2)

» However, we have an iid sample S := ((X1,Y1),..., (Xn, Yn)).

» We swap out P in the definition of mse(f), and replace it with
the empirical distribution on S

1 n
Po(z,y) = n Z 1{('7:7@/):('1,2'1:1/7?)}.

=1

» This is the distribution that puts probability mass 1/n on the
i-th training example.

P> Resulting objective function is
- ~ 1
E[(XTw—-Y)? =~ (Xjw—Y;)?

where (X,Y) ~ P,.
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Statistical learning view of OLS (3)

» In some circles:
» (True/population) risk of w: R(w) = E[(X w — Y)?]
> Empirical risk of w: R(w) := S (XTw —Y;)?

T n

» This is another instance of the plug-in principle!

»> We want to minimize mse(w) but we don’t know P, so we
replace it with our estimate P,.
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Statistical learning view of OLS (4)

» This is not specific to linear regression; also works for other

types of functions, and also other types of prediction problems,

including classification.
> For classification:

» (True/population) risk of f: R(f) := E[1{sx)2v}]

> Empirical risk of f: R(f) := % L L x) £
> All that changed is the Joss function (squared loss versus
zero/one loss)

» Procedure that minimizes empirical risk:
Empirical risk minimization (ERM)
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Upgrading linear regression (1)

> Make linear regression more powerful by being creative about
features
» We are forced to do this if x is not already provided as a vector
of numbers
» Instead of using x directly, use ¢(x) for some transformation ¢
(possibly vector-valued)
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Upgrading linear regression (2)

> Examples:

>

vvyy

Affine feature expansion, e.g., p(z) = (1, z), to accommodate
intercept

Standardization, e.g., ¢(z) = (z — u)/o where (u,0?) are
(estimates of ) the mean and variance of the feature value
Non-linear scalar transformations, e.g., p(z) = In(1 + )
Logical formula, e.g., ¢(x) = (21 A x5 A =x19) V (mz2 A7)
Trigonometric expansion, e.g.,

o(z) = (1,sin(zx), cos(z), sin(2z), cos(2z), . . .)

Polynomial expansion, e.g.,

o(x)=(1,21,...,2q,2%, ..., 2% 2122, ..., Ta—1Tq)
Headless neural network o(x) = N(z) € R*, where

N:R? — R* is a map computed by a intermediate layer of a
neural network

» (Later, we'll talk about how to “learn” N.)

41/52



Example: Taking advantage of linearity

> Example: y is health outcome, = is body temperature

» Physician suggests relevant feature is (square) deviation from
normal body temperature (z — 98.6)?

» What if you didn't know the magic constant 98.67 (Apparently
it is wrong in the US anyway)

> Use p(x) = (1,,2?)

» Can learn coefficients w € R3 such that p(x)"w = (x — 98.6)?,
or any other quadratic polynomial in  (which could be better!)
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Example: Binning features

» Dartmouth data example, where we considered intervals for the
HS GPA variable:

(0.00,0.25], (0.25,0.50], (0.50,0.75]

> Use o(z) = (1{z€(0.00,0.25]}» L{ze(0.25,0.50)}: - - - ) With a linear
function
» What is ¢(x)"w?
» ¢(z)"w = wj if x is in the j-th interval.
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Effect of feature expansion on expected MSE

A,

Efmse(f)]
=E[var(Y | X)] +E [var(f(X) | X)] +E [(B[f(X) | X] - E[Y | X])?
N—————

unavoidable error R 2 . . 2
variability of f approximation error of f

» Feature expansion can help reduce the third term
(approximation error)

» But maybe at the cost of increasing the second term
(variability)
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Performance of OLS (1)

» Study in context of 1ID model

> (X1,Y1),...,(Xpn, Yn),(X,Y) are iid, and assume E[X X ] is
invertible (WLOG).

» Let w* denote the minimizer of mse(w) over all w € RY.

» Inductive bias assumption: mse(w*) is small, i.e., there is a
linear function with low MSE.

» This is a fairly “weak” modeling assumption, especially
compared to the normal regression model.

» How much larger is mse(w) compared to mse(w*)?
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Performance of OLS (2)

» Theorem: In the [ID model, the OLS solution @ satisfies
n (E[mse(w)] — mse(w®)) — tr(cov(eW))
as n — 0o, where W = E[XXT]"1/2X and e = Y — XTw*.
» Corollary: If, in addition, (X,Y) follows the normal linear
regression model Y | X = 2 ~ N(z"w*, 02), then
n (E[mse ()] — mse(w*)) — o2d,

which is more typically written as
N d "
E[mse(w)] — | 1+ — | mse(w™).
n
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Linear algebraic view of OLS (1)

) T
> Write A= |a; -+ aq
4 \
» a; € R" is j-th column of A
» Span of ay,...,aq is range(A), a subspace of R"

> Minimizing R(w) = ||Aw — b||2 over w € R is same as finding
vector b in range(A) closest to b
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Figure 8: Orthogonal projection of b onto range(A)
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Linear algebraic view of OLS (2)

> Solution b is orthogonal projection of b onto range(A)

> 5isunhue

> Residual b— b is orthogonal to b

» To get w from 13, solve Aw = b for w.

> If rank(A) < d (always the case if n < d), then infinitely-many
ways to write b as linear combination of A1y .., 0q-

» Upshot: Uniqueness of least squares solution requires n > d,
and n < d guarantees non-uniqueness!
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» In the IID model, over-fitting is the phenomenon where the
true risk is much worse than the empirical risk.
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Over-fitting (2)

» Example:

> o(x) = (1,z,2%,...,2%), degree-k polynomial expansion

» Dimensionisd=k+1

» Any function of < k 4 1 points can be interpolated by
polynomial of degree < k

» Soif n < k+1=d, least squares solution @ will have zero
empirical risk, regardless of its true risk (assuming no two
training examples with distinct x;'s have different y;'s).

y
- )

0.2 0.4 0.6 0.8 1
X

o

Figure 9: Polynomial interpolation
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Beyond empirical risk minimization

» Recall plug-in principle
» Want to minimize risk with respect to (unavailable) P; use P,
instead
» What if we can’t regard data as iid from P?
» Example: Suppose we know P = %M + %F

(mixture distribution)
> We get size ny iid sample from M, and size ns iid sample from

F,ny <my
» How to implement plug-in principle?
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