Machine learning lecture slides

COMS 4771 Fall 2020

Regression I: Linear regression

Outline

- Statistical model for regression
- College GPA example
- Ordinary least squares for linear regression
- The expected mean squared error
- Different views of ordinary least squares
- Features and linearity
- Over-fitting
- Beyond empirical risk minimization

Figure 1: Galton board

Real-valued predictions

- Example: Galton board
- Physical model: hard
- Statistical model: final position of ball is random
- Normal (Gaussian) distribution with mean μ and variance σ^{2}
- Written $\mathrm{N}\left(\mu, \sigma^{2}\right)$
- Probability density function is

$$
p_{\mu, \sigma^{2}}(y)=\frac{1}{\sqrt{2 \pi \sigma^{2}}} e^{-\frac{(y-\mu)^{2}}{2 \sigma^{2}}}, \quad y \in \mathbb{R} .
$$

- Goal: predict final position accurately, measure squared loss (also called squared error)

$$
(\text { prediction }- \text { outcome })^{2}
$$

- Outcome is random, so look at expected squared loss (also called mean squared error)

Optimal prediction for mean squared error

- Predict $\hat{y} \in \mathbb{R}$; true final position is Y (random variable) with mean $\mathbb{E}(Y)=\mu$ and variance $\operatorname{var}(Y)=\mathbb{E}\left[(Y-\mathbb{E}(Y))^{2}\right]=\sigma^{2}$.
- Squared error is $(\hat{y}-Y)^{2}$.
- Bias-variance decomposition:

$$
\begin{aligned}
\mathbb{E}\left[(\hat{y}-Y)^{2}\right] & =\mathbb{E}\left[(\hat{y}-\mu+\mu-Y)^{2}\right] \\
& =(\hat{y}-\mu)^{2}+2(\hat{y}-\mu) \mathbb{E}[(\mu-Y)]+\mathbb{E}\left[(\mu-Y)^{2}\right] \\
& =(\hat{y}-\mu)^{2}+\sigma^{2} .
\end{aligned}
$$

- This is true for any random variable Y; don't need normality assumption.
- So optimal prediction is $\hat{y}=\mu$.
- When parameters are unknown, can estimate from related data,
- Can also do an analysis of a plug-in prediction...

Statistical model for regression

- Setting is same as for classification except:
- Label is real number, rather than $\{0,1\}$ or $\{1,2, \ldots, K\}$
- Care about squared loss, rather than whether prediction is correct
- Mean squared error of f :

$$
\operatorname{mse}(f):=\mathbb{E}\left[(f(X)-Y)^{2}\right],
$$

the expected squared loss of f on random example

Optimal prediction function for regression

- If (X, Y) is random test example, then optimal prediction function is

$$
f^{\star}(x)=\mathbb{E}[Y \mid X=x]
$$

- Also called the regression function or conditional mean function
- Prediction function with smallest MSE
- Depends on conditional distribution of Y given X

Test MSE (1)

- Just like in classification, we can use test data to estimate mse (\hat{f}) for a function \hat{f} that depends only on training data.
- IID model:
$\left(X_{1}, Y_{1}\right), \ldots,\left(X_{n}, Y_{n}\right),\left(X_{1}^{\prime}, Y_{1}^{\prime}\right), \ldots,\left(X_{m}^{\prime}, Y_{m}^{\prime}\right),(X, Y)$ are iid
- Training examples (that you have):

$$
S:=\left(\left(X_{1}, Y_{1}\right), \ldots,\left(X_{n}, Y_{n}\right)\right)
$$

- Test examples (that you have): $T:=\left(\left(X_{1}^{\prime}, Y_{1}^{\prime}\right), \ldots,\left(X_{m}^{\prime}, Y_{m}^{\prime}\right)\right)$
- Test example (that you don't have) used to define MSE: (X, Y)
- Predictor \hat{f} is based only on training examples
- Hence, test examples are independent of \hat{f} (very important!)
- We would like to estimate $\operatorname{mse}(\hat{f})$

Test MSE (2)

- Test MSE mse $(\hat{f}, T)=\frac{1}{m} \sum_{i=1}^{m}\left(\hat{f}\left(X_{i}^{\prime}\right) \neq Y_{i}^{\prime}\right)^{2}$
- By law of large numbers, mse $(\hat{f}, T) \rightarrow \operatorname{mse}(\hat{f})$ as $m \rightarrow \infty$

Example: College GPA

- Data from 750 Dartmouth students' College GPA
- Mean: 2.46
- Standard deviation: 0.746
- Assume this data is iid sample from the population of Dartmouth students (false)
- Absent any other features, best constant prediction of a uniformly random Dartmouth student's College GPA is $\hat{y}:=2.46$.

Figure 2: Histogram of College GPA

Predicting College GPA from HS GPA (1)

- Students represented in data have High School (HS) GPA
- Maybe HS GPA is predictive of College GPA?
- Data: $S:=\left(\left(x_{1}, y_{1}\right), \ldots,\left(x_{n}, y_{n}\right)\right)$
- x_{i} is HS GPA of i-th student
- y_{i} is College GPA of i-th student

Figure 3: Plot of College GPA vs HS GPA

Predicting College GPA from HS GPA (2)

- First attempt:
- Define intervals of possible HS GPAs:

$$
(0.00,0.25], \quad(0.25,0.50], \quad(0.50,0.75], \quad \cdots
$$

- For each such interval I, record the mean $\hat{\mu}_{I}$ of the College GPAs of students whose HS GPA falls in I.

$$
\hat{f}(x):=\left\{\begin{array}{cl}
\hat{\mu}_{(0.00,0.25]} & \text { if } x \in(0.00,0.25] \\
\hat{\mu}_{(0.25,0.50]} & \text { if } x \in(0.25,0.50] \\
\hat{\mu}_{(0.50,0.75]} & \text { if } x \in(0.50,0.75] \\
& \vdots
\end{array}\right.
$$

- (What to do about an interval I that contains no student's HS GPA?)

Figure 4: Plot of mean College GPA vs binned HS GPA

Predicting College GPA from HS GPA (3)

- Define

$$
\operatorname{mse}(f, S):=\frac{1}{|S|} \sum_{(x, y) \in S}(f(x)-y)^{2}
$$

the mean squared error of predictions made by f on examples in S.

- "mean" is with respect to the uniform distribution on examples in S.

$$
\operatorname{mse}(\hat{f}, S)=0.376
$$

$\sqrt{\operatorname{mse}(\hat{f}, S)}=0.613<0.746$ (the standard deviation of the y_{i} 's)

- Piece-wise constant function \hat{f} is an improvement over the constant function (i.e., just predicting the mean 2.46 for all x)!

Predicting College GPA from HS GPA (4)

- But \hat{f} has some quirks.
- E.g., those with HS GPA between 2.50 and 2.75 are predicted to have a lower College GPA than those with HS GPA between 2.25 and 2.50 .
- E.g., something unusual with the student who has HS GPA of 4.5

Figure 5: Plot of mean College GPA vs binned HS GPA

Least squares linear regression (1)

- Suppose we'd like to only consider functions with a specific functional form, e.g., a linear function:

$$
f(x)=m x+\theta
$$

for $m, \theta \in \mathbb{R}$.

- Technically, $x \mapsto m x+\theta$ is linear iff $\theta=0$. If $\theta \neq 0$, the function is not linear but affine.
- Semantics: Positive m means higher HS GPA gets a higher prediction of College GPA.

Least squares linear regression (2)

- What is the linear function with smallest MSE on $\left(x_{1}, y_{1}\right), \ldots,\left(x_{n}, y_{n}\right) \in \mathbb{R} \times \mathbb{R}$? This is the problem of least squares linear regression.
- Find $(m, \theta) \in \mathbb{R}^{2}$ to minimize

$$
\frac{1}{n} \sum_{i=1}^{n}\left(m x_{i}+\theta-y_{i}\right)^{2} .
$$

- Also called ordinary least squares ($\underline{(O L S}$)

Figure 6: Plot of least squares linear regression line

Computing OLS (1)

- Derivatives equal zero conditions (normal equations):

$$
\begin{aligned}
& \frac{\partial}{\partial \theta}\left\{\frac{1}{n} \sum_{i=1}^{n}\left(m x_{i}+\theta-y_{i}\right)^{2}\right\}=\frac{2}{n} \sum_{i=1}^{n}\left(m x_{i}+\theta-y_{i}\right)=0 \\
& \frac{\partial}{\partial m}\left\{\frac{1}{n} \sum_{i=1}^{n}\left(m x_{i}+\theta-y_{i}\right)^{2}\right\}=\frac{2}{n} \sum_{i=1}^{n}\left(m x_{i}+\theta-y_{i}\right) x_{i}=0
\end{aligned}
$$

- System of two linear equations with two unknowns (m, θ).
- Define

$$
\begin{gathered}
\bar{x}:=\frac{1}{n} \sum_{i=1}^{n} x_{i}, \quad \overline{x^{2}}:=\frac{1}{n} \sum_{i=1}^{n} x_{i}^{2}, \\
\overline{x y}:=\frac{1}{n} \sum_{i=1}^{n} x_{i} y_{i}, \quad \bar{y}:=\frac{1}{n} \sum_{i=1}^{n} y_{i},
\end{gathered}
$$

so system can be re-written as

$$
\begin{align*}
\bar{x} m+\theta & =\bar{y} \\
\overline{x^{2}} m+\bar{x} \theta & =\overline{x y} .
\end{align*}
$$

Computing OLS (2)

- Write in matrix notation:

$$
\left[\begin{array}{cc}
\bar{x} & 1 \\
\overline{x^{2}} & \bar{x}
\end{array}\right]\left[\begin{array}{c}
m \\
\theta
\end{array}\right]=\left[\begin{array}{c}
\bar{y} \\
\overline{x y}
\end{array}\right]
$$

- Solution: $(\hat{m}, \hat{\theta}) \in \mathbb{R}^{2}$ given by

$$
\hat{m}:=\frac{\overline{x y}-\bar{x} \cdot \bar{y}}{\overline{x^{2}}-\bar{x}^{2}}, \quad \hat{\theta}:=\bar{y}-\frac{\overline{x y}-\bar{x} \cdot \bar{y}}{\overline{x^{2}}-\bar{x}^{2}} \cdot \bar{x} .
$$

Computing OLS (3)

- Catch: The above solution only makes sense if $\overline{x^{2}}-\bar{x}^{2} \neq 0$, i.e., the variance of the x_{i} 's is non-zero.
- If $\overline{x^{2}}-\bar{x}^{2}=0$, then the matrix defining the LHS of system of equations is singular.

Computing OLS (4)

- In general, "derivative equals zero" is only a necessary condition for a solution to be optimal; not necessarily a sufficient condition!
- Theorem: Every solution to the normal equations is an optimal solution to the least squares linear regression problem.

Decomposition of expected MSE (1)

- Two different functions of HS GPA for predicting College GPA.
- What makes them different?
- We care about prediction of College GPA for student we haven't seen before based on their HS GPA.
- IID model: $\left(X_{1}, Y_{1}\right), \ldots,\left(X_{n}, Y_{n}\right),(X, Y)$ are iid
- Say training examples $\left(X_{1}, Y_{1}\right), \ldots,\left(X_{n}, Y_{n}\right)$ are used to determine \hat{f}.
- What is $\mathbb{E}[\operatorname{mse}(\hat{f})]$?

Decomposition of expected MSE (2)

$$
\begin{aligned}
& \mathbb{E}[\operatorname{mse}(\hat{f})] \\
& =\mathbb{E}\left[\mathbb{E}\left[(\hat{f}(X)-Y)^{2} \mid \hat{f}\right]\right] \\
& =\mathbb{E}\left[\mathbb{E}\left[(\hat{f}(X)-Y)^{2} \mid \hat{f}, X\right]\right] \\
& =\mathbb{E}\left[\operatorname{var}(Y \mid X)+(\hat{f}(X)-\mathbb{E}[Y \mid X])^{2}\right] \\
& =\mathbb{E}\left[\operatorname{var}(Y \mid X)+\mathbb{E}\left[(\hat{f}(X)-\mathbb{E}[Y \mid X])^{2} \mid X\right]\right] \\
& =\mathbb{E}\left[\operatorname{var}(Y \mid X)+\operatorname{var}(\hat{f}(X) \mid X)+(\mathbb{E}[\hat{f}(X) \mid X]-\mathbb{E}[Y \mid X])^{2}\right] \\
& =\underbrace{\mathbb{E}[\operatorname{var}(Y \mid X)]}_{\text {unavoidable error }}+\underbrace{\mathbb{E}[\operatorname{var}(\hat{f}(X) \mid X)]}_{\text {variability of } \hat{f}}+\underbrace{\mathbb{E}\left[(\mathbb{E}[\hat{f}(X) \mid X]-\mathbb{E}[Y \mid X])^{2}\right]}_{\text {approximation erroo of } \hat{f}}
\end{aligned}
$$

Decomposition of expected MSE (3)

- First term is quantifies inherent unpredictability of Y (even after seeing X)
- Second term measures the "variability" of \hat{f} due to the random nature of training data. Depends on:
- probability distribution of training data,
- type of function being fit (e.g., piecewise constant, linear),
- method of fitting (e.g., OLS),
- etc.
- Third term quantifies how well a function produced by the fitting procedure can approximate the regression function, even after removing the "variability" of \hat{f}.

Multivariate linear regression (1)

- For Dartmouth data, also have SAT Score for all students.
- Can we use both predictor variables (HS GPA and SAT Score) to get an even better prediction of College GPA?
- Binning approach: instead of a 1-D grid (intervals), consider a 2-D grid (squares).
- Linear regression: a function $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ of the form

$$
f(x)=m_{1} x_{1}+m_{2} x_{2}+\theta
$$

for some $\left(m_{1}, m_{2}\right) \in \mathbb{R}^{2}$ and $\theta \in \mathbb{R}$.

Multivariate linear regression (2)

- The general case: a (homogeneous) linear function $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$ of the form

$$
f(x)=x^{\top} w
$$

for some $w \in \mathbb{R}^{d}$.

- w is called the weight vector or coefficient vector.
- What about inhomogeneous linear functions?
- Just always include a "feature" that always has value 1. Then the corresponding weight acts like θ from before.

Multivariate ordinary least squares (1)

- What is the linear function with smallest MSE on $\left(x_{1}, y_{1}\right), \ldots,\left(x_{n}, y_{n}\right) \in \mathbb{R}^{d} \times \mathbb{R}$?
- Find $w \in \mathbb{R}^{d}$ to minimize

$$
\widehat{\mathcal{R}}(w):=\frac{1}{n} \sum_{i=1}^{n}\left(x_{i}^{\top} w-y_{i}\right)^{2} .
$$

- Notation warning: $x_{i} \in \mathbb{R}^{d}$

Multivariate ordinary least squares (2)

- In matrix notation:

$$
\widehat{\mathcal{R}}(w):=\|A w-b\|_{2}^{2}
$$

where

$$
A:=\frac{1}{\sqrt{n}}\left[\begin{array}{ccc}
\longleftarrow & x_{1}^{\top} & \longrightarrow \\
\vdots & \\
\longleftarrow & x_{n}^{\top} & \longrightarrow
\end{array}\right] \in \mathbb{R}^{n \times d}, \quad b:=\frac{1}{\sqrt{n}}\left[\begin{array}{c}
y_{1} \\
\vdots \\
y_{n}
\end{array}\right] \in \mathbb{R}^{n}
$$

- If we put vector $v \in \mathbb{R}^{d}$ in the context of matrix multiplication, it is treated as a column vector by default!
- If we want a row vector, we write v^{\top}.
- Therefore

$$
A w-b=\frac{1}{\sqrt{n}}\left[\begin{array}{c}
x_{1}^{\top} w-y_{1} \\
\vdots \\
x_{n}^{\top} w-y_{n}
\end{array}\right]
$$

Figure 7: Geometric picture of least squares linear regression

Multivariate normal equations (1)

- Like the one-dimensional case, optimal solutions are characterized by a system of linear equations (the "derivatives equal zero" conditions) called the normal equations:

$$
\nabla_{w} \widehat{\mathcal{R}}(w)=\left[\begin{array}{c}
\frac{\partial \widehat{\mathcal{R}}(w)}{\partial w_{1}} \\
\vdots \\
\frac{\partial \widehat{\mathcal{R}}(w)}{\partial w_{d}}
\end{array}\right]=2 A^{\top}(A w-b)=0
$$

which is equivalent to

$$
A^{\top} A w=A^{\top} b
$$

Multivariate normal equations (2)

- If $A^{\top} A$ is non-singular (i.e., invertible), then there is a unique solution given by

$$
\hat{w}:=\left(A^{\top} A\right)^{-1} A^{\top} b .
$$

- If $A^{\top} A$ is singular, then there are infinitely many solutions!
- Theorem: Every solution to the normal equations is an optimal solution to the least squares linear regression problem.

Algorithm for least squares linear regression

- How to solve least squares linear regression problem?
- Just solve the normal equations, a system of d linear equations in d unknowns.
- Time complexity (naïve) of Gaussian elimination algorithm: $O\left(d^{3}\right)$.
- Actually, also need to count time to form the system of equations, which is $O\left(n d^{2}\right)$.

Classical statistics view of OLS (1)

- Normal linear regression model
- Model training examples $\left(X_{1}, Y_{1}\right), \ldots,\left(X_{n}, Y_{n}\right)$ as iid random variables taking values in $\mathbb{R}^{d} \times \mathbb{R}$, where

$$
Y_{i} \mid X_{i}=x_{i} \sim \mathrm{~N}\left(x_{i}^{\top} w, \sigma^{2}\right)
$$

- $w \in \mathbb{R}^{d}$ and $\sigma^{2}>0$ are the parameters of the model.
- The least squares linear regression problem is the same as the problem of finding the maximum likelihood value for w.

Classical statistics view of OLS (2)

- Suppose your data really does come from a distribution in this statistical model, say, with parameters w and σ^{2}.
- Then the function with smallest MSE is the linear function $f^{\star}(x)=x^{\top} w$, and its MSE is mse $\left(f^{\star}\right)=\sigma^{2}$.
- So estimating w is a sensible idea! (Plug-in principle...)

Statistical learning view of OLS (1)

- IID model: $\left(X_{1}, Y_{1}\right), \ldots,\left(X_{n}, Y_{n}\right),(X, Y) \sim_{\text {iid }} P$ are iid random variables taking values in $\mathbb{R}^{d} \times \mathbb{R}$
- (X, Y) is the (unseen) "test" example
- Goal: find a (linear) function $w \in \mathbb{R}^{d}$ with small MSE

$$
\operatorname{mse}(w)=\mathbb{E}\left[\left(X^{\top} w-Y\right)^{2}\right]
$$

- We cannot directly minimize $\operatorname{mse}(w)$ as a function of $w \in \mathbb{R}^{d}$, since it is an expectation (e.g., integral) with respect to the unknown distribution P

Statistical learning view of OLS (2)

- However, we have an iid sample $S:=\left(\left(X_{1}, Y_{1}\right), \ldots,\left(X_{n}, Y_{n}\right)\right)$.
- We swap out P in the definition of $\operatorname{mse}(f)$, and replace it with the empirical distribution on S :

$$
P_{n}(x, y):=\frac{1}{n} \sum_{i=1}^{n} \mathbf{1}_{\left\{(x, y)=\left(x_{i}, y_{i}\right)\right\}}
$$

- This is the distribution that puts probability mass $1 / n$ on the i-th training example.
- Resulting objective function is

$$
\mathbb{E}\left[\left(\tilde{X}^{\top} w-\tilde{Y}\right)^{2}\right]=\frac{1}{n} \sum_{i=1}^{n}\left(X_{i}^{\top} w-Y_{i}\right)^{2}
$$

where $(\tilde{X}, \tilde{Y}) \sim P_{n}$.

Statistical learning view of OLS (3)

- In some circles:
- (True/population) risk of $w: \mathcal{R}(w):=\mathbb{E}\left[\left(X^{\top} w-Y\right)^{2}\right]$
- Empirical risk of $w: \widehat{\mathcal{R}}(w):=\frac{1}{n} \sum_{i=1}^{n}\left(X_{i}^{\top} w-Y_{i}\right)^{2}$
- This is another instance of the plug-in principle!
- We want to minimize mse (w) but we don't know P, so we replace it with our estimate P_{n}.

Statistical learning view of OLS (4)

- This is not specific to linear regression; also works for other types of functions, and also other types of prediction problems, including classification.
- For classification:
- (True/population) risk of $f: \mathcal{R}(f):=\mathbb{E}\left[\mathbf{1}_{\{f(X) \neq Y\}}\right]$
- Empirical risk of $f: \widehat{\mathcal{R}}(f):=\frac{1}{n} \sum_{i=1}^{n} \mathbf{1}_{\left\{f\left(X_{i}\right) \neq Y_{i}\right\}}$
- All that changed is the loss function (squared loss versus zero/one loss)
- Procedure that minimizes empirical risk:

Empirical risk minimization (ERM)

Upgrading linear regression (1)

- Make linear regression more powerful by being creative about features
- We are forced to do this if x is not already provided as a vector of numbers
- Instead of using x directly, use $\varphi(x)$ for some transformation φ (possibly vector-valued)

Upgrading linear regression (2)

- Examples:
- Affine feature expansion, e.g., $\varphi(x)=(1, x)$, to accommodate intercept
- Standardization, e.g., $\varphi(x)=(x-\mu) / \sigma$ where $\left(\mu, \sigma^{2}\right)$ are (estimates of) the mean and variance of the feature value
- Non-linear scalar transformations, e.g., $\varphi(x)=\ln (1+x)$
- Logical formula, e.g., $\varphi(x)=\left(x_{1} \wedge x_{5} \wedge \neg x_{10}\right) \vee\left(\neg x_{2} \wedge x_{7}\right)$
- Trigonometric expansion, e.g., $\varphi(x)=(1, \sin (x), \cos (x), \sin (2 x), \cos (2 x), \ldots)$
- Polynomial expansion, e.g., $\varphi(x)=\left(1, x_{1}, \ldots, x_{d}, x_{1}^{2}, \ldots, x_{d}^{2}, x_{1} x_{2}, \ldots, x_{d-1} x_{d}\right)$
- Headless neural network $\varphi(x)=N(x) \in \mathbb{R}^{k}$, where $N: \mathbb{R}^{d} \rightarrow \mathbb{R}^{k}$ is a map computed by a intermediate layer of a neural network
- (Later, we'll talk about how to "learn" N.)

Example: Taking advantage of linearity

- Example: y is health outcome, x is body temperature
- Physician suggests relevant feature is (square) deviation from normal body temperature $(x-98.6)^{2}$
- What if you didn't know the magic constant 98.6? (Apparently it is wrong in the US anyway)
- Use $\varphi(x)=\left(1, x, x^{2}\right)$
- Can learn coefficients $w \in \mathbb{R}^{3}$ such that $\varphi(x)^{\top} w=(x-98.6)^{2}$, or any other quadratic polynomial in x (which could be better!)

Example: Binning features

- Dartmouth data example, where we considered intervals for the HS GPA variable:

$$
(0.00,0.25], \quad(0.25,0.50], \quad(0.50,0.75]
$$

- Use $\varphi(x)=\left(\mathbf{1}_{\{x \in(0.00,0.25]\}}, \mathbf{1}_{\{x \in(0.25,0.50]\}}, \ldots\right)$ with a linear function
- What is $\varphi(x)^{\top} w$?
- $\varphi(x)^{\top} w=w_{j}$ if x is in the j-th interval.

Effect of feature expansion on expected MSE

$$
\begin{aligned}
& \mathbb{E}[\operatorname{mse}(\hat{f})] \\
& =\underbrace{\mathbb{E}[\operatorname{var}(Y \mid X)]}_{\text {unavoidable error }}+\underbrace{\mathbb{E}[\operatorname{var}(\hat{f}(X) \mid X)]}_{\text {variability of } \hat{f}}+\underbrace{\mathbb{E}\left[(\mathbb{E}[\hat{f}(X) \mid X]-\mathbb{E}[Y \mid X])^{2}\right]}_{\text {approximation error of } \hat{f}}
\end{aligned}
$$

- Feature expansion can help reduce the third term (approximation error)
- But maybe at the cost of increasing the second term (variability)

Performance of OLS (1)

- Study in context of IID model
- $\left(X_{1}, Y_{1}\right), \ldots,\left(X_{n}, Y_{n}\right),(X, Y)$ are iid, and assume $\mathbb{E}\left[X X^{\top}\right]$ is invertible (WLOG).
- Let w^{*} denote the minimizer of $\operatorname{mse}(w)$ over all $w \in \mathbb{R}^{d}$.
- Inductive bias assumption: mse $\left(w^{*}\right)$ is small, i.e., there is a linear function with low MSE.
- This is a fairly "weak" modeling assumption, especially compared to the normal regression model.
- How much larger is mse (\hat{w}) compared to $\operatorname{mse}\left(w^{*}\right)$?

Performance of OLS (2)

- Theorem: In the IID model, the OLS solution \hat{w} satisfies

$$
n\left(\mathbb{E}[\operatorname{mse}(\hat{w})]-\operatorname{mse}\left(w^{*}\right)\right) \rightarrow \operatorname{tr}(\operatorname{cov}(\varepsilon W))
$$

as $n \rightarrow \infty$, where $W=\mathbb{E}\left[X X^{\top}\right]^{-1 / 2} X$ and $\varepsilon=Y-X^{\top} w^{*}$.

- Corollary: If, in addition, (X, Y) follows the normal linear regression model $Y \mid X=x \sim \mathrm{~N}\left(x^{\top} w^{*}, \sigma^{2}\right)$, then

$$
n\left(\mathbb{E}[\operatorname{mse}(\hat{w})]-\operatorname{mse}\left(w^{*}\right)\right) \rightarrow \sigma^{2} d
$$

which is more typically written as

$$
\mathbb{E}[\operatorname{mse}(\hat{w})] \rightarrow\left(1+\frac{d}{n}\right) \operatorname{mse}\left(w^{*}\right)
$$

Linear algebraic view of OLS (1)

- Write $A=\left[\begin{array}{ccc}\uparrow & & \uparrow \\ a_{1} & \cdots & a_{d} \\ \downarrow & & \downarrow\end{array}\right]$
- $a_{j} \in \mathbb{R}^{n}$ is j-th column of A
- Span of a_{1}, \ldots, a_{d} is range (A), a subspace of \mathbb{R}^{n}
- Minimizing $\widehat{\mathcal{R}}(w)=\|A w-b\|_{2}^{2}$ over $w \in \mathbb{R}^{d}$ is same as finding vector \hat{b} in range (A) closest to b

Figure 8: Orthogonal projection of b onto range (A)

Linear algebraic view of OLS (2)

- Solution \hat{b} is orthogonal projection of b onto range (A)
- \hat{b} is unique
- Residual $b-\hat{b}$ is orthogonal to \hat{b}
- To get w from \hat{b}, solve $A w=\hat{b}$ for w.
- If $\operatorname{rank}(A)<d$ (always the case if $n<d$), then infinitely-many ways to write \hat{b} as linear combination of a_{1}, \ldots, a_{d}.
- Upshot: Uniqueness of least squares solution requires $n \geq d$, and $n<d$ guarantees non-uniqueness!

Over-fitting (1)

- In the IID model, over-fitting is the phenomenon where the true risk is much worse than the empirical risk.

Over-fitting (2)

- Example:
- $\varphi(x)=\left(1, x, x^{2}, \ldots, x^{k}\right)$, degree- k polynomial expansion
- Dimension is $d=k+1$
- Any function of $\leq k+1$ points can be interpolated by polynomial of degree $\leq k$
- So if $n \leq k+1=d$, least squares solution \hat{w} will have zero empirical risk, regardless of its true risk (assuming no two training examples with distinct x_{i} 's have different y_{i} 's).

Figure 9: Polynomial interpolation

Beyond empirical risk minimization

- Recall plug-in principle
- Want to minimize risk with respect to (unavailable) P; use P_{n} instead
- What if we can't regard data as iid from P ?
- Example: Suppose we know $P=\frac{1}{2} M+\frac{1}{2} F$ (mixture distribution)
- We get size n_{1} iid sample from M, and size n_{2} iid sample from $F, n_{2} \ll n_{1}$
- How to implement plug-in principle?

