Machine learning lecture slides

COMS 4771 Fall 2020

Prediction theory

Outline

- Statistical model for binary outcomes
- Plug-in principle and IID model
- Maximum likelihood estimation
- Statistical model for binary classification
- Analysis of nearest neighbor classifier
- Estimating the error rate of a classifier
- Beyond binary classification and the IID model

Statistical model for binary outcomes

- Example: coin toss
- Physical model: hard
- Statistical model: outcome is random
 - <u>Bernoulli distribution</u> with heads probability $\theta \in [0, 1]$
 - Encode heads as 1 and tails as 0
 - Written as $Bernoulli(\theta)$
 - Notation: Y ~ Bernoulli(θ) means Y is a random variable with distribution Bernoulli(θ).
- Goal: correctly predict outcome

Optimal prediction

- Suppose $Y \sim \text{Bernoulli}(\theta)$.
 - Suppose θ known.
 - Optimal prediction:

 $\mathbf{1}_{\{\theta > 1/2\}}$

Indicator function notation:

$$\mathbf{1}_{\{Q\}} := egin{cases} 1 & ext{if } Q ext{ is true} \\ 0 & ext{if } Q ext{ is false} \end{cases}$$

The optimal prediction is incorrect with probability

 $\min\{\theta,1-\theta\}$

Learning to make predictions

lf θ unknown:

- Assume we have data: outcomes of previous coin tosses
- Data should be related to what we want to predict: same coin is being tossed

Plug-in principle and IID model

Plug-in principle:

- Estimate unknown(s) based on data (e.g., θ)
- Plug estimates into formula for optimal prediction

When can we estimate the unknowns?

- Observed data should be related to the outcome we want to predict
- IID model: Observations & (unseen) outcome are <u>iid</u> random variables

iid: independent and identically distributed

Crucial modeling assumption that makes learning possible

▶ When is the IID assumption not reasonable? ...

Statistical models

• <u>Parametric statistical model</u> $\{P_{\theta} : \theta \in \Theta\}$

- collection of parameterized probability distributions for data
- Θ is the *parameter space*
- One distribution per parameter value $\theta \in \Theta$
- E.g., distributions on n binary outcomes treated as iid Bernoulli random variables
 - $\blacktriangleright \ \Theta = [0,1]$
 - Overload notation: P_{θ} is the <u>probability mass function</u> (<u>pmf</u>) for the distribution.
 - What is formula for $P_{\theta}(y_1, \ldots, y_n)$ for $(y_1, \ldots, y_n) \in \{0, 1\}^n$?

Maximum likelihood estimation (1)

• <u>*Likelihood*</u> of parameter θ (given observed data)

 $\blacktriangleright L(\theta) = P_{\theta}(y_1, \dots, y_n)$

- Maximum likelihood estimation:
 - Choose θ with highest likelihood
- Log-likelihood
 - Sometimes more convenient
 - $\blacktriangleright~\ln$ is increasing, so $\ln L(\theta)$ orders the parameters in the same way as $L(\theta)$

Maximum likelihood estimation (2)

Coin toss example

Log-likelihood

$$\ln L(\theta) = \sum_{i=1}^{n} y_i \ln \theta + (1 - y_i) \ln(1 - \theta)$$

- Use calculus to determine formula for maximizer
- This is a little annoying, but someone else has already done it for you:

$$\hat{\theta}_{\text{MLE}} := \frac{1}{n} \sum_{i=1}^{n} y_i.$$

Back to plug-in principle

- We are given data $y_1, \ldots, y_n \in \{0, 1\}^n$, which we model using the IID model from before
- Obtain estimate $\hat{\theta}_{\mathrm{MLE}}$ of known heta based on y_1, \ldots, y_n
- Plug-in $\hat{\theta}_{MLE}$ for θ in formula for optimal prediction:

$$\hat{Y} := \mathbf{1}_{\{\hat{\theta}_{\mathrm{MLE}} > 1/2\}}.$$

Analysis of the plug-in prediction (1)

- How good is the plug-in prediction?
 - Study behavior under the IID model, where $Y_1, \ldots, Y_N, Y \sim_{\text{iid}} \text{Bernoulli}(\theta).$
 - Y_1, \ldots, Y_n are the data we collected
 - Y is the outcome to predict
 - θ is the unknown parameter
 - ► Recall: optimal prediction is incorrect with probability min{θ, 1 − θ}.
 - We cannot hope Ŷ to beat this, but we can hope it is not much worse.

Analysis of the plug-in prediction (2)

Theorem:

- $\Pr(\hat{Y} \neq Y) \le \min\{\theta, 1 \theta\} + \frac{1}{2} \cdot |\theta 0.5| \cdot e^{-2n(\theta 0.5)^2}.$
 - The first term is the optimal error probability.
 - ► The second term comes from the probability that the $\hat{\theta}_{\text{MLE}}$ is on the opposite side of 1/2 as θ .
 - This probability is very small when n is large!
 - If S is number of heads in n independent tosses of coin with bias θ, then S ~ Binomial(n, θ) (Binomial distribution)

Figure 1: $\Pr(S > n/2)$ for $S \sim \operatorname{Binomial}(n, \theta)$, n = 20

Figure 2: $\Pr(S > n/2)$ for $S \sim \operatorname{Binomial}(n, \theta)$, n = 40

Figure 3: $\Pr(S > n/2)$ for $S \sim \operatorname{Binomial}(n, \theta)$, n = 60

Figure 4: $\Pr(S > n/2)$ for $S \sim \operatorname{Binomial}(n, \theta)$, n = 80

Statistical model for labeled data in binary classification

- Example: spam filtering
- Labeled example: $(x, y) \in \mathcal{X} \times \{0, 1\}$
- $\blacktriangleright~\mathcal{X}$ is input (feature) space; $\{0,1\}$ is the output (label) space
 - X is not necessarily the space of inputs itself (e.g., space of all emails), but rather the space of what we measure about inputs
- We only see x (email), and then must make prediction of y (spam or not-spam)
- Statistical model: (X, Y) is random
 - X has some marginal probability distribution
 - Conditional probability distribution of Y given X = x is Bernoulli with heads probability $\eta(x)$

 $\begin{array}{l} \bullet \quad \eta \colon \mathcal{X} \to [0,1] \text{ is a function, sometimes called the} \\ \hline regression function \text{ or } conditional mean function} \\ \hline \mathbb{E}[Y \mid X = x] = \eta(x)). \end{array}$

Error rate of a classifier

For a classifier f: X → {0,1}, the <u>error rate</u> of f (with respect to the distribution of (X, Y)) is

$$\operatorname{err}(f) := \operatorname{Pr}(f(X) \neq Y).$$

Recall that we had previously used the notation

$$\operatorname{err}(f,S) = \frac{1}{|S|} \sum_{(x,y)\in S} \mathbf{1}_{\{f(x)\neq y\}},$$

which is the same as $Pr(f(X) \neq Y)$ when the distribution of (X, Y) is uniform over the labeled examples in S.

Caution: This notation err(f) does not make explicit the dependence on (the distribution of) the random example (X, Y). You will need to determine this from context.

Conditional expectations (1)

- Consider any random variables A and B.
- ► Conditional expectation of A given B:
 - Written $\mathbb{E}[A \mid B]$
 - A random variable! What is its expectation?
 - Law of iterated expectations (a.k.a. tower property):

 $\mathbb{E}[\mathbb{E}[A \mid B]] = \mathbb{E}[A]$

Conditional expectations (2)

Example: roll a fair 6-sided die

- ► A = number shown facing up
- B = parity of number shown facing up
- $C := \mathbb{E}[A \mid B]$ is random variable with

$$\begin{split} \Pr\left(C = \mathbb{E}[A \mid B = \mathsf{odd}] = \frac{1}{3}(1+3+5) = 3\right) &= \frac{1}{2}\\ \Pr\left(C = \mathbb{E}[A \mid B = \mathsf{even}] = \frac{1}{3}(2+4+6) = 4\right) = \frac{1}{2} \end{split}$$

Bayes classifier

Optimal classifier (Bayes classifier):

$$f^{\star}(x) = \mathbf{1}_{\{\eta(x) > 1/2\}},$$

where η is the conditional mean function

- Classifier with smallest probability of mistake
- Depends on the function η , which is typically unknown!
- Optimal error rate (Bayes error rate):
 - Write error rate as $\operatorname{err}(f^{\star}) = \operatorname{Pr}(f^{\star}(X) \neq Y) = \mathbb{E}[\mathbf{1}_{\{f^{\star}(X) \neq Y\}}]$
 - Conditional on X, probability of mistake is min{η(X), 1 − η(X)}.

So, optimal error rate is

$$\operatorname{err}(f^{\star}) = \mathbb{E}[\mathbf{1}_{\{f^{\star}(X)\neq Y\}}]$$
$$= \mathbb{E}[\mathbb{E}[\mathbf{1}_{\{f^{\star}(X)\neq Y\}} \mid X]]$$
$$= \mathbb{E}[\min\{\eta(X), 1 - \eta(X)\}]$$

Example: spam filtering

- ▶ Suppose input *x* is a single (binary) feature, "is email all-caps?"
- How to interpret "the probability that email is spam given x = 1?"
- What does it mean for the Bayes classifier f^* to be optimal?

Learning prediction functions

- What to do if η is unknown?
 - Training data: $(x_1, y_1), \ldots, (x_n, y_n)$
 - Assume data are related to what we want to predict
 - Let Z := (X, Y), and $Z_i := (X_i, Y_i)$ for $i = 1, \ldots, n$.
 - ▶ IID model: Z_1, \ldots, Z_n, Z are iid random variables
 - Z = (X, Y) is the (unseen) "test" example
 - (Technically, each labeled example is a $(\mathcal{X} \times \{0, 1\})$ -valued random variable. If $\mathcal{X} = \mathbb{R}^d$, can regard as vector of d + 1 random variables.)

Performance of nearest neighbor classifier

- Study in context of IID model
- Assume $\eta(x) \approx \eta(x')$ whenever x and x' are close.
 - This is where the modeling assumption comes in (via choice of distance function)!
- ▶ Let (X, Y) be the "test" example, and suppose $(X_{\hat{i}}, Y_{\hat{i}})$ is the nearest neighbor among training data

$$S = ((X_1, Y_1), \dots, (X_n, Y_n)).$$

▶ For large n, X and $X_{\hat{i}}$ likely to be close enough so that $\eta(X) \approx \eta(X_{\hat{i}})$.

• Prediction is $Y_{\hat{i}}$, true label is Y.

- ► Conditional on X and $X_{\hat{i}}$, what is probability that $Y_{\hat{i}} \neq Y$? ► $\eta(X)(1 - \eta(X_{\hat{i}})) + (1 - \eta(X))\eta(X_{\hat{i}}) \approx 2\eta(X)(1 - \eta(X))$
- Conclusion: expected error rate is $\mathbb{E}[\operatorname{err}(\operatorname{NN}_S)] \approx 2 \cdot \mathbb{E}[\eta(X)(1-\eta(X))] \text{ for large } n$
 - Recall that optimal is $\mathbb{E}[\min\{\eta(X), 1 \eta(X)\}].$
 - So $\mathbb{E}[\operatorname{err}(\operatorname{NN}_S)]$ is at most twice optimal.
 - Never exactly optimal unless $\eta(x) \in \{0, 1\}$ for all x.

Test error rate (1)

How to estimate error rate?

► IID model:

- $(X_1,Y_1),\ldots,(X_n,Y_n),(X_1',Y_1'),\ldots,(X_m',Y_m'),(X,Y)$ are iid
 - ▶ Training examples (that you have): $(X_1, Y_1), \ldots, (X_n, Y_n)$
 - Test examples (that you have): $(X'_1, Y'_1), \ldots, (X'_m, Y'_m)$
 - Test example (that you don't have) used to define error rate: (X,Y)
- Classifier \hat{f} is based only on training examples
- Hence, test examples are independent of \hat{f} (very important!)
- We would like to estimate $\operatorname{err}(\hat{f})$
 - Caution: since \hat{f} depends on training data, it is random!
 - Convention: When we write $\operatorname{err}(\hat{f})$ where \hat{f} is random, we really mean $\operatorname{Pr}(\hat{f}(X) \neq Y \mid \hat{f})$.
 - Therefore $\operatorname{err}(\hat{f})$ is a random variable!

Test error rate (2)

- Conditional distribution of $S := \sum_{i=1}^{m} \mathbf{1}_{\{\hat{f}(X'_i) \neq Y'_i\}}$ given training data:
 - $S \mid \text{training data} \sim \text{Binomial}(m, \varepsilon) \text{ where } \varepsilon := \operatorname{err}(\hat{f})$
 - By law of large numbers,

$$\frac{1}{m}S \to \varepsilon$$

as $m \to \infty$

$$\frac{1}{m} \sum_{i=1}^{m} \mathbf{1}_{\{\hat{f}(X'_i) \neq Y'_i\}}$$

is close to ε when m is large

How accurate is the estimate? Depends on the (conditional) variance!

Confusion tables

► ...

- *True positive rate* (*recall*): Pr(f(X) = 1 | Y = 1)
 False positive rate: Pr(f(X) = 1 | Y = 0)
 Precision: Pr(Y = 1 | f(X) = 1)
- Confusion table

		f(x) = 0	f(x) = 1
l	y = 0	# true negatives	# false positives
l	j = 1	# false negatives	# true positives

ROC curves

► Receiver operating characteristic (ROC) curve

- What points are achievable on the TPR-FPR plane?
- Use randomization to combine classifiers

Figure 5: TPR vs FPR plot with two points

Figure 6: TPR vs FPR plot with many points

More than two outcomes

- ▶ What if there are *K* > 2 possible outcomes?
- ▶ Replace coin with *K*-sided die
- Say Y has a <u>categorical distribution</u> over $[K] := \{1, ..., K\}$, determined probability vector $\theta = (\theta_1, ..., \theta_K)$

▶
$$\theta_k \ge 0$$
 for all $k \in [K]$, and $\sum_{k=1}^{K} \theta_k = 1$
▶ $\Pr(Y = k) = \theta_k$

▶ Optimal prediction of Y if θ is known

$$\hat{y} := \arg\max_{k \in [K]} \theta_k$$

Statistical model for multi-class classification

- ▶ Statistical model for labeled examples (X, Y), where Y takes values in [K]
 - ▶ Now, $Y \mid X = x$ has a categorical distribution with parameter vector $\eta(x) = (\eta(x)_1, \dots, \eta(x)_K)$
 - ▶ Conditional probability function: $\eta(x)_k := \Pr(Y = k \mid X = x)$
 - Optimal classifier: $f^{\star}(x) = \arg \max_{k \in [K]} \eta(x)_k$
 - Optimal error rate: $\Pr(f^*(X) \neq Y) = 1 \mathbb{E}[\max_k \eta(X)_k]$

Potential downsides of the IID model

- Example: Train OCR digit classifier using data from Alice's handwriting, but eventually use on digits written by Bob.
- What is a better evaluation?

What if we want to eventually use on digits written by both Alice and Bob?