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Statistical model for binary outcomes

» Example: coin toss
» Physical model: hard
» Statistical model: outcome is random
» Bernoulli distribution with heads probability 6 € [0, 1]
» Encode heads as 1 and tails as 0
» Written as Bernoulli(f)
» Notation: Y ~ Bernoulli(f) means Y is a random variable with
distribution Bernoulli(f).

» Goal: correctly predict outcome
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Optimal prediction

» Suppose Y ~ Bernoulli(#).

» Suppose 6 known.
» Optimal prediction:
16512

» Indicator function notation:

1 )1 ifQis true
Q=0 i Q is false

» The optimal prediction is incorrect with probability

min{f,1 — 0}
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Learning to make predictions

» If 0 unknown:

» Assume we have data: outcomes of previous coin tosses
» Data should be related to what we want to predict: same coin
is being tossed
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Plug-in principle and [ID model

» Plug-in principle:
» Estimate unknown(s) based on data (e.g., 6)
» Plug estimates into formula for optimal prediction

» When can we estimate the unknowns?

» Observed data should be related to the outcome we want to
predict

» [ID model: Observations & (unseen) outcome are jid random
variables

» jid: independent and identically distributed

» Crucial modeling assumption that makes learning possible

» When is the IID assumption not reasonable? ...
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Statistical models

» Parametric statistical model {Py : 6 € ©}
» collection of parameterized probability distributions for data
» O is the parameter space
» One distribution per parameter value 6 € ©
» E.g., distributions on n binary outcomes treated as iid Bernoulli
random variables
> 0 =10,1]
» Overload notation: Py is the probability mass function (pmf)
for the distribution. -
» What is formula for Py(y1,...,yn) for (y1,...,yn) € {0,1}"7?
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Maximum likelihood estimation (1)

» Likelihood of parameter 6 (given observed data)
> L(0)=Py(y1,---,Yn)

» Maximum likelihood estimation:
» Choose # with highest likelihood

» [og-likelihood
» Sometimes more convenient

» 1In is increasing, so In L(6) orders the parameters in the same
way as L(0)
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Maximum likelihood estimation (2)

» Coin toss example
» Log-likelihood

InL(9) = Xn:yz Ind+ (1—y;)In(l—0)

i=1

» Use calculus to determine formula for maximizer
» This is a little annoying, but someone else has already done it

for you:
R 1<
OMLE = - Z;yl
i
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Back to plug-in principle

» We are given data y1,...,y, € {0,1}", which we model using
the [ID model from before

» Obtain estimate éMLE of known 6 based on y1,...,yn
» Plug-in 6\ for 6 in formula for optimal prediction:

Y= l{éMLE>1/2}'

9/32



Analysis of the plug-in prediction (1)

» How good is the plug-in prediction?
» Study behavior under the [ID model, where
Y1,..., YN, Y ~jiq Bernoulli(6).
» Yi,...,Y, are the data we collected
P> Y is the outcome to predict
» @ is the unknown parameter

» Recall: optimal prediction is incorrect with probability

min{d, 1 — 6}.
» \We cannot hope Y to beat this, but we can hope it is not much
worse.
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Analysis of the plug-in prediction (2)

» Theorem:
Pr(Y #Y) <min{f,1 -0} + 1|6 — 0.5 - e20(0-0:57*,
» The first term is the optimal error probability.
» The second term comes from the probability that the OniLE is
on the opposite side of 1/2 as 6.
» This probability is very small when n is large!

» If S is number of heads in n independent tosses of coin with
bias 0, then S ~ Binomial(n, 8) (Binomial distribution)
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Figure 1. Pr(S > n/2) for S ~ Binomial(n, §), n = 20
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Figure 2: Pr(S > n/2) for S ~ Binomial(n, §), n = 40

13/32



50 60

Figure 3: Pr(S > n/2) for S ~ Binomial(n, §), n = 60
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60 70 80

Figure 4: Pr(S > n/2) for S ~ Binomial(n, §), n = 80
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Statistical model for labeled data in binary classification

» Example: spam filtering
Labeled example: (z,y) € X x {0,1}
X is input (feature) space; {0, 1} is the output (label) space
> X is not necessarily the space of inputs itself (e.g., space of all
emails), but rather the space of what we measure about inputs

vy

» We only see = (email), and then must make prediction of y
(spam or not-spam)
» Statistical model: (X,Y) is random
» X has some marginal probability distribution
» Conditional probability distribution of Y given X =z is
Bernoulli with heads probability n(z)
> n: X — [0,1] is a function, sometimes called the

regression function or conditional mean function (since
EY [ X =] =n(z)).
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Error rate of a classifier

» For a classifier f: X — {0, 1}, the error rate of f (with
respect to the distribution of (X,Y")) is

err(f) = Pr(f(X) # V).
Recall that we had previously used the notation

1
err(fas):@ Y L@y

(z,y)ES

which is the same as Pr(f(X) # Y) when the distribution of
(X,Y) is uniform over the labeled examples in S.

» Caution: This notation err(f) does not make explicit the
dependence on (the distribution of) the random example
(X,Y). You will need to determine this from context.
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Conditional expectations (1)

» Consider any random variables A and B.
» Conditional expectation of A given B:
> Written E[A | B]
» A random variable! What is its expectation?
» Law of iterated expectations (a.k.a. tower property):

E[E[A | B]] = E[4]
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Conditional expectations (2)

» Example: roll a fair 6-sided die

» A = number shown facing up
» B = parity of number shown facing up
» C:=E[A| B] is random variable with

Pr(C:E[AB:odd]:;(1+3+5):3

N = N =

)
Pr(C’—]E[A|B—even]—;(2+4+6)_4> =
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Bayes classifier

» Optimal classifier (Bayes classifier):

(@) = 1n@)>1/2)

where 7 is the conditional mean function
» Classifier with smallest probability of mistake
» Depends on the function 7, which is typically unknown!
» Optimal error rate (Bayes error rate):
> Write error rate as err(f*) = Pr(f*(X) #Y) = E[1{5(x)2v}]
» Conditional on X, probability of mistake is

min{n(X), 1 - (X)}.
» So, optimal error rate is

err(f*) = E[1{s+(x)2v}]
=EE[ (s x)2vy | X]]
= E[min{n(X),1 — n(X)}].
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Example: spam filtering

» Suppose input z is a single (binary) feature, “is email all-caps?”

> How to interpret “the probability that email is spam given
r=17"

» What does it mean for the Bayes classifier f* to be optimal?
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Learning prediction functions

» What to do if  is unknown?

VVVVYYVY

Training data: (z1,41),-.-,(Tn, Yn)

Assume data are related to what we want to predict

Let Z:= (X,Y), and Z; := (X;,Y;) fori =1,...,n.

1D model: Z3,...,Z,,Z are iid random variables

Z = (X,Y) is the (unseen) “test” example

(Technically, each labeled example is a (X x {0,1})-valued
random variable. If X = R9, can regard as vector of d + 1
random variables.)
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Performance of nearest neighbor classifier

» Study in context of 1ID model
» Assume n(x) =~ n(z") whenever z and 2’ are close.
» This is where the modeling assumption comes in (via choice of
distance function)!
» Let (X,Y) be the "test” example, and suppose (X;,Y;) is the
nearest neighbor among training data
S =((X1,Y1),..., (Xn, Yn)).
» For large n, X and X; likely to be close enough so that
n(X) = n(X;).
» Prediction is Y, true label is Y.
» Conditional on X and X;, what is probability that Y; # Y7
> (X)L =n(X;) + (1 = n(X))n(X;) = 2n(X) (1 — n(X))
» Conclusion: expected error rate is
Elerr(NNg)] =~ 2 - E[n(X)(1 — n(X))] for large n
» Recall that optimal is E[min{n(X),1 —n(X)}].
» So Elerr(NNg)] is at most twice optimal.
» Never exactly optimal unless n(x) € {0,1} for all z.
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Test error rate (1)

> How to estimate error rate?
» [ID model:
(X1, Y1),..., (X0, Yao), (X1, Y]), ..., (X],, Y. ), (X,Y) are iid
» Training examples (that you have): (X1,Y7),...,(X,,Ys)
» Test examples (that you have): (X1,Y{),...,(X/,,Y.)
» Test example (that you don't have) used to define error rate:
(X,Y)
> Classifier f is based only on training examples
» Hence, test examples are independent of f (very
important!)
> We would like to estimate err(f)
» Caution: since f depends on training data, it is random!
» Convention: When we write err(f) where f is random, we
really mean Pr(f(X) #Y | f).

A

» Therefore err(f) is a random variable!
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Test error rate (2)

» Conditional distribution of § :=>"1",
training data:

> S| training data ~ Binomial(m, ¢) where ¢ := err(f)
» By law of large numbers,

Liroxpvyy given

1
—S — e
m
as m — 0o
» Therefore, test error rate

1 m
- 1,; ’ ’
o ; (F(XD#Y}

is close to € when m is large
» How accurate is the estimate? Depends on the (conditional)

variance!
1 F _ e(1—e)
> var(--S | training data) = =—
> Standard deviation is |/ 212

m

25/32



Confusion tables

>
>
>
>
>

True positive rate (recall): Pr(f(X)=1|Y =1)
False positive rate: Pr(f(X)=1|Y =0)
Precision: Pr(Y =1 | f(X)=1)
Confusion table
| fl@=0 | fl@)=1
y = 0 || # true negatives | # false positives
y = 1 || # false negatives | # true positives
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» Receiver operating characteristic (ROC) curve

» What points are achievable on the TPR-FPR plane?
» Use randomization to combine classifiers
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TPR
1 o (FPR2, TPRy)

o (FPR{, TPR1)

~FPR

Figure 5: TPR vs FPR plot with two points
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% ~FPR

Figure 6: TPR vs FPR plot with many points
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More than two outcomes

» What if there are K > 2 possible outcomes?
P Replace coin with K-sided die
» Say Y has a categorical distribution over K] :={1,..., K},
determined probability vector § = (61,...,0k)
> 0, >0forall ke[K], and Y5 0p =1
> Pr(Y = k) = 0,
» Optimal prediction of Y if 6 is known

9 := arg max 0,
ke[K]
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Statistical model for multi-class classification

» Statistical model for labeled examples (X,Y"), where Y takes
values in [K]
» Now, Y | X =z has a categorical distribution with parameter

vector 7(z) = (n(z)1, .., n(*)k)
» Conditional probability function: n(z); :=Pr(Y =k | X = x)
> Optimal classifier: f*(z) = arg max;c g n(7)x
» Optimal error rate: Pr(f*(X) #Y) =1 — E[maxy n(X)]
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Potential downsides of the [ID model

» Example: Train OCR digit classifier using data from Alice’s
handwriting, but eventually use on digits written by Bob.

» What is a better evaluation?

> What if we want to eventually use on digits written by both
Alice and Bob?
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