Machine learning lecture slides

COMS 4771 Fall 2020

Prediction theory

Outline

- Statistical model for binary outcomes
- Plug-in principle and IID model
- Maximum likelihood estimation
- Statistical model for binary classification
- Analysis of nearest neighbor classifier
- Estimating the error rate of a classifier
- Beyond binary classificaiton and the IID model

Statistical model for binary outcomes

- Example: coin toss
- Physical model: hard
- Statistical model: outcome is random
- Bernoulli distribution with heads probability $\theta \in[0,1]$
- Encode heads as 1 and tails as 0
- Written as $\operatorname{Bernoulli}(\theta)$
- Notation: $Y \sim \operatorname{Bernoulli}(\theta)$ means Y is a random variable with distribution Bernoulli(θ).
- Goal: correctly predict outcome

Optimal prediction

- Suppose $Y \sim \operatorname{Bernoulli}(\theta)$.
- Suppose θ known.
- Optimal prediction:

$$
\mathbf{1}_{\{\theta>1 / 2\}}
$$

- Indicator function notation:

$$
\mathbf{1}_{\{Q\}}:= \begin{cases}1 & \text { if } Q \text { is true } \\ 0 & \text { if } Q \text { is false }\end{cases}
$$

- The optimal prediction is incorrect with probability

$$
\min \{\theta, 1-\theta\}
$$

Learning to make predictions

- If θ unknown:
- Assume we have data: outcomes of previous coin tosses
- Data should be related to what we want to predict: same coin is being tossed

Plug-in principle and IID model

- Plug-in principle:
- Estimate unknown(s) based on data (e.g., θ)
- Plug estimates into formula for optimal prediction
- When can we estimate the unknowns?
- Observed data should be related to the outcome we want to predict
- IID model: Observations \& (unseen) outcome are iid random variables
- iid: independent and identically distributed
- Crucial modeling assumption that makes learning possible
- When is the IID assumption not reasonable? ...

Statistical models

- Parametric statistical model $\left\{P_{\theta}: \theta \in \Theta\right\}$
- collection of parameterized probability distributions for data
- Θ is the parameter space
- One distribution per parameter value $\theta \in \Theta$
- E.g., distributions on n binary outcomes treated as iid Bernoulli random variables
- $\Theta=[0,1]$
- Overload notation: P_{θ} is the probability mass function (pmf) for the distribution.
- What is formula for $P_{\theta}\left(y_{1}, \ldots, y_{n}\right)$ for $\left(y_{1}, \ldots, y_{n}\right) \in\{0,1\}^{n}$?

Maximum likelihood estimation (1)

- Likelihood of parameter θ (given observed data)
- $L(\theta)=P_{\theta}\left(y_{1}, \ldots, y_{n}\right)$
- Maximum likelihood estimation:
- Choose θ with highest likelihood
- Log-likelihood
- Sometimes more convenient
- \ln is increasing, so $\ln L(\theta)$ orders the parameters in the same way as $L(\theta)$

Maximum likelihood estimation (2)

- Coin toss example
- Log-likelihood

$$
\ln L(\theta)=\sum_{i=1}^{n} y_{i} \ln \theta+\left(1-y_{i}\right) \ln (1-\theta)
$$

- Use calculus to determine formula for maximizer
- This is a little annoying, but someone else has already done it for you:

$$
\hat{\theta}_{\mathrm{MLE}}:=\frac{1}{n} \sum_{i=1}^{n} y_{i}
$$

Back to plug-in principle

- We are given data $y_{1}, \ldots, y_{n} \in\{0,1\}^{n}$, which we model using the IID model from before
- Obtain estimate $\hat{\theta}_{\text {MLE }}$ of known θ based on y_{1}, \ldots, y_{n}
- Plug-in $\hat{\theta}_{\text {MLE }}$ for θ in formula for optimal prediction:

$$
\hat{Y}:=\mathbf{1}_{\left\{\hat{\theta}_{\mathrm{MLE}}>1 / 2\right\}} .
$$

Analysis of the plug-in prediction (1)

- How good is the plug-in prediction?
- Study behavior under the IID model, where $Y_{1}, \ldots, Y_{N}, Y \sim_{\text {iid }} \operatorname{Bernoulli}(\theta)$.
- Y_{1}, \ldots, Y_{n} are the data we collected
- Y is the outcome to predict
- θ is the unknown parameter
- Recall: optimal prediction is incorrect with probability $\min \{\theta, 1-\theta\}$.
- We cannot hope \hat{Y} to beat this, but we can hope it is not much worse.

Analysis of the plug-in prediction (2)

- Theorem:
$\operatorname{Pr}(\hat{Y} \neq Y) \leq \min \{\theta, 1-\theta\}+\frac{1}{2} \cdot|\theta-0.5| \cdot e^{-2 n(\theta-0.5)^{2}}$.
- The first term is the optimal error probability.
- The second term comes from the probability that the $\hat{\theta}_{\text {MLE }}$ is on the opposite side of $1 / 2$ as θ.
- This probability is very small when n is large!
- If S is number of heads in n independent tosses of coin with bias θ, then $S \sim \operatorname{Binomial}(n, \theta)$ (Binomial distribution)

Figure 1: $\operatorname{Pr}(S>n / 2)$ for $S \sim \operatorname{Binomial}(n, \theta), n=20$

Figure 2: $\operatorname{Pr}(S>n / 2)$ for $S \sim \operatorname{Binomial}(n, \theta), n=40$

Figure 3: $\operatorname{Pr}(S>n / 2)$ for $S \sim \operatorname{Binomial}(n, \theta), n=60$

Figure 4: $\operatorname{Pr}(S>n / 2)$ for $S \sim \operatorname{Binomial}(n, \theta), n=80$

Statistical model for labeled data in binary classification

- Example: spam filtering
- Labeled example: $(x, y) \in \mathcal{X} \times\{0,1\}$
- \mathcal{X} is input (feature) space; $\{0,1\}$ is the output (label) space
- \mathcal{X} is not necessarily the space of inputs itself (e.g., space of all emails), but rather the space of what we measure about inputs
- We only see x (email), and then must make prediction of y (spam or not-spam)
- Statistical model: (X, Y) is random
- X has some marginal probability distribution
- Conditional probability distribution of Y given $X=x$ is $\overline{\text { Bernoulli with heads probability } \eta(x)}$
- $\eta: \mathcal{X} \rightarrow[0,1]$ is a function, sometimes called the regression function or conditional mean function (since $\widetilde{\mathbb{E}}[Y \mid X=x]=\eta(x))$.

Error rate of a classifier

- For a classifier $f: \mathcal{X} \rightarrow\{0,1\}$, the error rate of f (with respect to the distribution of $(X, Y))$ is

$$
\operatorname{err}(f):=\operatorname{Pr}(f(X) \neq Y)
$$

Recall that we had previously used the notation

$$
\operatorname{err}(f, S)=\frac{1}{|S|} \sum_{(x, y) \in S} \mathbf{1}_{\{f(x) \neq y\}}
$$

which is the same as $\operatorname{Pr}(f(X) \neq Y)$ when the distribution of (X, Y) is uniform over the labeled examples in S.

- Caution: This notation $\operatorname{err}(f)$ does not make explicit the dependence on (the distribution of) the random example (X, Y). You will need to determine this from context.

Conditional expectations (1)

- Consider any random variables A and B.
- Conditional expectation of A given B :
- Written $\mathbb{E}[A \mid B]$
- A random variable! What is its expectation?
- Law of iterated expectations (a.k.a. tower property):

$$
\mathbb{E}[\mathbb{E}[A \mid B]]=\mathbb{E}[A]
$$

Conditional expectations (2)

- Example: roll a fair 6-sided die
- $A=$ number shown facing up
- $B=$ parity of number shown facing up
- $C:=\mathbb{E}[A \mid B]$ is random variable with

$$
\begin{array}{r}
\operatorname{Pr}\left(C=\mathbb{E}[A \mid B=\text { odd }]=\frac{1}{3}(1+3+5)=3\right)=\frac{1}{2} \\
\operatorname{Pr}\left(C=\mathbb{E}[A \mid B=\text { even }]=\frac{1}{3}(2+4+6)=4\right)=\frac{1}{2}
\end{array}
$$

Bayes classifier

- Optimal classifier (Bayes classifier):

$$
f^{\star}(x)=\mathbf{1}_{\{\eta(x)>1 / 2\}},
$$

where η is the conditional mean function

- Classifier with smallest probability of mistake
- Depends on the function η, which is typically unknown!
- Optimal error rate (Bayes error rate):
- Write error rate as $\operatorname{err}\left(f^{\star}\right)=\operatorname{Pr}\left(f^{\star}(X) \neq Y\right)=\mathbb{E}\left[\mathbf{1}_{\left\{f^{\star}(X) \neq Y\right\}}\right]$
- Conditional on X, probability of mistake is $\min \{\eta(X), 1-\eta(X)\}$.
- So, optimal error rate is

$$
\begin{aligned}
\operatorname{err}\left(f^{\star}\right) & =\mathbb{E}\left[\mathbf{1}_{\left\{f^{\star}(X) \neq Y\right\}}\right] \\
& =\mathbb{E}\left[\mathbb{E}\left[\mathbf{1}_{\left\{f^{\star}(X) \neq Y\right\}} \mid X\right]\right] \\
& =\mathbb{E}[\min \{\eta(X), 1-\eta(X)\}] .
\end{aligned}
$$

Example: spam filtering

- Suppose input x is a single (binary) feature, "is email all-caps?"
- How to interpret "the probability that email is spam given $x=1$?"
- What does it mean for the Bayes classifier f^{\star} to be optimal?

Learning prediction functions

- What to do if η is unknown?
- Training data: $\left(x_{1}, y_{1}\right), \ldots,\left(x_{n}, y_{n}\right)$
- Assume data are related to what we want to predict
- Let $Z:=(X, Y)$, and $Z_{i}:=\left(X_{i}, Y_{i}\right)$ for $i=1, \ldots, n$.
- IID model: Z_{1}, \ldots, Z_{n}, Z are iid random variables
- $Z=(X, Y)$ is the (unseen) "test" example
- (Technically, each labeled example is a $(\mathcal{X} \times\{0,1\})$-valued random variable. If $\mathcal{X}=\mathbb{R}^{d}$, can regard as vector of $d+1$ random variables.)

Performance of nearest neighbor classifier

- Study in context of IID model
- Assume $\eta(x) \approx \eta\left(x^{\prime}\right)$ whenever x and x^{\prime} are close.
- This is where the modeling assumption comes in (via choice of distance function)!
- Let (X, Y) be the "test" example, and suppose $\left(X_{\hat{i}}, Y_{\hat{i}}\right)$ is the nearest neighbor among training data

$$
S=\left(\left(X_{1}, Y_{1}\right), \ldots,\left(X_{n}, Y_{n}\right)\right)
$$

- For large n, X and $X_{\hat{i}}$ likely to be close enough so that $\eta(X) \approx \eta\left(X_{\hat{i}}\right)$.
- Prediction is $Y_{\hat{i}}$, true label is Y.
- Conditional on X and $X_{\hat{i}}$, what is probability that $Y_{\hat{i}} \neq Y$?
- $\eta(X)\left(1-\eta\left(X_{\hat{i}}\right)\right)+(1-\eta(X)) \eta\left(X_{\hat{i}}\right) \approx 2 \eta(X)(1-\eta(X))$
- Conclusion: expected error rate is $\mathbb{E}\left[\operatorname{err}\left(\mathrm{NN}_{S}\right)\right] \approx 2 \cdot \mathbb{E}[\eta(X)(1-\eta(X))]$ for large n
- Recall that optimal is $\mathbb{E}[\min \{\eta(X), 1-\eta(X)\}]$.
- So $\mathbb{E}\left[\operatorname{err}\left(\mathrm{NN}_{S}\right)\right]$ is at most twice optimal.
- Never exactly optimal unless $\eta(x) \in\{0,1\}$ for all x.

Test error rate (1)

- How to estimate error rate?
- IID model:
$\left(X_{1}, Y_{1}\right), \ldots,\left(X_{n}, Y_{n}\right),\left(X_{1}^{\prime}, Y_{1}^{\prime}\right), \ldots,\left(X_{m}^{\prime}, Y_{m}^{\prime}\right),(X, Y)$ are iid
- Training examples (that you have): $\left(X_{1}, Y_{1}\right), \ldots,\left(X_{n}, Y_{n}\right)$
- Test examples (that you have): $\left(X_{1}^{\prime}, Y_{1}^{\prime}\right), \ldots,\left(X_{m}^{\prime}, Y_{m}^{\prime}\right)$
- Test example (that you don't have) used to define error rate: (X, Y)
- Classifier \hat{f} is based only on training examples
- Hence, test examples are independent of \hat{f} (very important!)
- We would like to estimate $\operatorname{err}(\hat{f})$
- Caution: since \hat{f} depends on training data, it is random!
- Convention: When we write $\operatorname{err}(\hat{f})$ where \hat{f} is random, we really mean $\operatorname{Pr}(\hat{f}(X) \neq Y \mid \hat{f})$.
- Therefore $\operatorname{err}(\hat{f})$ is a random variable!

Test error rate (2)

- Conditional distribution of $S:=\sum_{i=1}^{m} \mathbf{1}_{\left\{\hat{f}\left(X_{i}^{\prime}\right) \neq Y_{i}^{\prime}\right\}}$ given training data:
- $S \mid$ training data $\sim \operatorname{Binomial}(m, \varepsilon)$ where $\varepsilon:=\operatorname{err}(\hat{f})$
- By law of large numbers,

$$
\frac{1}{m} S \rightarrow \varepsilon
$$

as $m \rightarrow \infty$

- Therefore, test error rate

$$
\frac{1}{m} \sum_{i=1}^{m} \mathbf{1}_{\left\{\hat{f}\left(X_{i}^{\prime}\right) \neq Y_{i}^{\prime}\right\}}
$$

is close to ε when m is large

- How accurate is the estimate? Depends on the (conditional) variance!
- $\operatorname{var}\left(\left.\frac{1}{m} S \right\rvert\,\right.$ training data $)=\frac{\varepsilon(1-\varepsilon)}{m}$
- Standard deviation is $\sqrt{\frac{\varepsilon(1-\varepsilon)}{m}}$

Confusion tables

- True positive rate (recall): $\operatorname{Pr}(f(X)=1 \mid Y=1)$
- False positive rate: $\operatorname{Pr}(f(X)=1 \mid Y=0)$
- Precision: $\operatorname{Pr}(Y=1 \mid f(X)=1)$
- Confusion table

	$f(x)=0$	$f(x)=1$
$y=0$	\# true negatives	\# false positives
$y=1$	\# false negatives	\# true positives

ROC curves

- Receiver operating characteristic (ROC) curve
- What points are achievable on the TPR-FPR plane?
- Use randomization to combine classifiers

Figure 5: TPR vs FPR plot with two points

Figure 6: TPR vs FPR plot with many points

More than two outcomes

- What if there are $K>2$ possible outcomes?
- Replace coin with K-sided die
- Say Y has a categorical distribution over $[K]:=\{1, \ldots, K\}$, determined probability vector $\theta=\left(\theta_{1}, \ldots, \theta_{K}\right)$
- $\theta_{k} \geq 0$ for all $k \in[K]$, and $\sum_{k=1}^{K} \theta_{k}=1$
- $\operatorname{Pr}(Y=k)=\theta_{k}$
- Optimal prediction of Y if θ is known

$$
\hat{y}:=\underset{k \in[K]}{\arg \max } \theta_{k}
$$

Statistical model for multi-class classification

- Statistical model for labeled examples (X, Y), where Y takes values in $[K]$
- Now, $Y \mid X=x$ has a categorical distribution with parameter vector $\eta(x)=\left(\eta(x)_{1}, \ldots, \eta(x)_{K}\right)$
- Conditional probability function: $\eta(x)_{k}:=\operatorname{Pr}(Y=k \mid X=x)$
- Optimal classifier: $f^{\star}(x)=\arg \max _{k \in[K]} \eta(x)_{k}$
- Optimal error rate: $\operatorname{Pr}\left(f^{\star}(X) \neq Y\right)=1-\mathbb{E}\left[\max _{k} \eta(X)_{k}\right]$

Potential downsides of the IID model

- Example: Train OCR digit classifier using data from Alice's handwriting, but eventually use on digits written by Bob.
- What is a better evaluation?
- What if we want to eventually use on digits written by both Alice and Bob?

