Machine learning lecture slides

COMS 4771 Fall 2020

Nearest neighbor classification

Outline

- Optical character recognition (OCR) example
- Nearest neighbor rule
- Error rate, test error rate
- k-nearest neighbor rule
- Hyperparameter tuning via cross-validation
- Distance functions, features
- Computational issues

Example: OCR for digits

- ► Goal: Automatically label images of handwritten digits
- Possible labels are $\{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$
- Start with a large collection of already-labeled images

•
$$D := \{(x_1, y_1), \dots, (x_n, y_n)\}$$

- ▶ x_i is the *i*-th image; $y_i \in \{0, 1, ..., 9\}$ is the corresponding label.
- The National Institute for Standards and Technology (NIST) has amassed such a data set.

Figure 1: Some images of handwritten digits from MNIST data set

Nearest neighbor (NN) classifier

- ► Nearest neighbor (NN) classifier NN_D:
 - Represented using collection of labeled examples $D := ((x_1, y_1), \dots, (x_n, y_n))$, plus a snippet of code
- ► Input: x
 - Find x_i in D that is "closest" to x (the *nearest neighbor*)
 - (Break ties in some arbitrary fixed way)
 - Final Return y_i

Naïve distance between images of handwritten digits (1)

▶ Treat (grayscale) images as vectors in Euclidean space ℝ^d
 ▶ d = 28² = 784

Generalizes physical 3-dimensional space

• Each point $x = (x_1, \ldots, x_d) \in \mathbb{R}^d$ is a vector of d real numbers

•
$$||x - z||_2 = \sqrt{\sum_{j=1}^d (x_j - z_j)^2}$$

- Also called ℓ_2 distance
- WARNING: Here, x_j refers to the *j*-th coordinate of x

Figure 2: Grayscale pixel representation of an image of a handwritten "4"

Naïve distance between images of handwritten digits (2)

▶ Why use this for images?

▶ Why not use this for images?

Recap: OCR via NN

What is the core prediction problem?

▶ What *features* (i.e., predictive variables) are available?

Will these features be available at time of prediction?

- Is there enough information ("training data") to learn the relationship between the features and label?
- What are the modeling assumptions?

Is high-accuracy prediction a useful goal for the application?

Error rate

▶ <u>Error rate</u> (on a collection of labeled examples *S*)

- \blacktriangleright Fraction of labeled examples in S that have incorrect label prediction from \hat{f}
- Written as $\operatorname{err}(\hat{f}, S)$
- (Often, the word "rate" is omitted)

OCR via NN:

 $\operatorname{err}(\operatorname{NN}_D, D) =$

Test error rate (1)

- Better evaluation: <u>test error rate</u>
 Train/test split, S ∩ T = Ø
 S is <u>training data</u>, T is <u>test data</u>
 Classifier f̂ only based on S
 <u>Training error rate</u>: err(f̂, S)
 <u>Test error rate</u>: err(f̂, T)
- On OCR data: test error rate is $err(NN_S, T) = 3.09\%$
 - Is this good?
 - What is the test error rate of uniformly random predictions?
 - What is the test error rate of a constant prediction?

Test error rate (2)

Why is test error rate meaningful?

Figure 3: A test example and its nearest neighbor in training data (2, 8)

Figure 4: A test example and its nearest neighbor in training data (3, 5)

Figure 5: A test example and its nearest neighbor in training data (5, 4)

Figure 6: A test example and its nearest neighbor in training data (4, 1)

More on the modeling assumptions

- Modeling assumption: Nearby images are more likely to have the same label than different labels.
 - This is an assumption about the choice of distance function
 - In our OCR example, this is an assumption about the choice of features

Diagnostics

• What are the kinds of errors made by NN_S ?

Figure 7: A test example and its nearest neighbor in training data (2, 8)

Figure 8: Three nearest neighbors of the test example (8,2,2)

Upgrade: *k*-NN

• k-nearest neighbor (k-NN) classifier $NN_{k,D}$

► Input: x

- Find the k nearest neighbors of x in D
- Return the plurality of the corresponding labels
- As before, break ties in some arbitrary fixed way

Typical effect of \boldsymbol{k}

- Smaller k: smaller training error rate
- Larger k: higher training error rate, but predictions more "stable" due to voting
- ▶ On OCR data: lowest test error rate achieved at k = 3

k	1	3	5	7	9
$\operatorname{err}(\operatorname{NN}_{k,S},T)$	0.0309	0.0295	0.0312	0.0306	0.0341

Hyperparameter tuning

► k is a hyperparameter of k-NN

How to choose hyperparameters?

Bad idea: Choosing k that yields lowest training error rate (degenerate choice: k = 1)

Better idea: Simulate train/test split on the training data

Hold-out validation

 $\blacktriangleright \text{ Randomly split } S \text{ into } A \text{ and } B$

• Compute <u>validation error rate</u> for all $k \in \{1, 3, 5, 7, 9\}$:

$$V_k := \operatorname{err}(\operatorname{NN}_{k,A}, B)$$

Let k̂ be the value of k for which V_k is smallest
 Classifier to use is NN_{k,S}

Upgrade: Distance functions (1)

Specialize to input types

- Edit distance for strings
- Shape distance for images
- Time warping distance for audio waveforms

Upgrade: Distance functions (2)

Generic distances for vectors of real numbers

 \blacktriangleright ℓ_p distances

$$||x - z||_p = \left(\sum_{j=1}^d |x_j - z_j|^p\right)^{1/p}$$

• What are the unit balls for these distances (in \mathbb{R}^2)?

Upgrade: Distance functions (3)

Distance functions for images of handwritten digits

distance	ℓ_2	ℓ_3	tangent	shape
test error rate	0.0309	0.0283	0.0110	0.0063

Features

• When using numerical <u>features</u> (arranged in a vector from \mathbb{R}^d):

- Scale of features matters
- Noisy features can ruin NN
 - E.g., consider what happens in OCR example if you have another 10000 additional features that are pure "noise"
 - Or a single pure noise feature whose scale is 10000× the nominal scale of pixel values

"Curse of dimension"

- Weird effects in \mathbb{R}^d for large d
- Can find $2^{\Omega(d)}$ points that are approximately equidistant

Computation for NN

- ► Brute force search: Θ(dn) time for each prediction (using Euclidean distance in ℝ^d)
- ▶ Clever data structures: "improve" to $2^d \log(n)$ time
- Approximate nearest neighbors: sub-linear time to get "approximate" answers

• E.g., find point among the top-1% of closest points?