Machine learning lecture slides

COMS 4771 Fall 2020

Overview

Questions

Outline

- ► A "bird's eye view" of machine learning
- About COMS 4771

Figure 1: Predict the bird species depicted in a given image.

Figure 2: Predict how a given user would rate a given movie.

Figure 3: Predict the French translation of a given English sentence.

Figure 4: Predict the "win probability" of a given move in a given game state.

How to "solve" problems without ML?

Image classification:

- Recruit a "bird expert" to teach you about different birds features (e.g., beak shape, feather color, typical environment)
- Recognize these features in a given image, and then come up with a best guess of the bird species
- Recommender system:
 - Ask user to self-report specific movie genres of interest (e.g., horror, sci-fi)
 - Ask movie suppliers to categorize movies into the same genres
 - Predict a high rating for any movie in a user's genre-of-interest; low rating for all other movies
- Machine translation: ...
- ▶ Chess: . . .

Work in ML

- Applied ML
 - Collect/prepare data, build/train models, analyze performance/errors/etc
- ML developer
 - Implement ML algorithms and infrastructure
- ML research
 - Design/analyze models and algorithms
- Note: These roles are not mutually exclusive!

Mathematical and computational prerequisites

Math

- Linear algebra, probability, multivariable calculus
- Understand and reason about the concepts (not just calculations)
- Software/programming
 - Much ML work is implemented in python with libraries such as numpy and pytorch

Basic setting: supervised learning

- Training data: dataset comprised of labeled examples
 - Labeled example: a pair of the form (input, label)
 - Input: what you see before you make a prediction (a.k.a. context, side-information, features, etc.)
 - Label: output value (a.k.a. output, response, target, etc.)
- Goal: learn <u>predictor</u> (i.e., prediction function) to predict label from input for new examples

Figure 5: Decision tree

- 1: if $0.335 \cdot x_1 + 2.5 \cdot x_2 + \cdots + 6.35 \cdot x_{10^6} > 4.3$ then
- 2: return spam
- 3: else
- 4: return not spam
- 5: end if

Figure 6: Linear classifier ("Perceptron")

input hidden units output

Figure 7: Neural network

Types of prediction problems

- Binary classification
 - Given an email, is it spam or not?
 - (What's the probability that it is spam?)
- Multi-class classification
 - Given an image, what animal is depicted?
 - Or which animals are depicted?)
- Regression

- Given clincal measurements, what is level of tumor antigens?
- (In absolute level? Log-scale?)
- Structured output prediction
 - Given a sentence, what is its grammatical parse tree?
 - (Or dependency tree?)

Template of supervised learning pipeline

- Get data
- Determine representation of and predictive model for data
- ► Train the predictor (a.k.a. model fitting, parameter estimation)
- Evaluate predictor (test the "goodness of fit")
- Deploy predictor in application

Questions

What is the core prediction problem?

▶ What *features* (i.e., predictor variables) are available?

Will these features be available at time of prediction?

- Is there enough information (e.g., training data, features) to learn the relationship between the input and output?
- What are the modeling assumptions?

Is high-accuracy prediction a useful goal for the application?

Where do assumptions / domain expertise come in?

Form of the prediction function

Choice of features

Choice of training data

Choice of learning algorithm

Choice of objective function and contraints

Challenges

Might not have the "right" data

Might not have the "right" model

Might under-fit the data

Might over-fit the data

Data might be corrupted, noisy, ...

Key statistical/algorithmic ideas in ML

Plug-in principle

About COMS 4771

Basic principles and methods of supervised machine learning

- 1. Appetizer: nearest neighbor rules (a "non-parametric" method)
- 2. Statistical model for prediction
- 3. Regression
 - Why? Clean, simple, and illustrates important concepts (linearity, inductive bias, regularization, kernels)
- 4. Classification
- 5. Optimization methods for machine learning
 - Convex optimization, neural networks
- 6. Maybe one other topic if time permits
- ▶ This is not a course about how to use sklearn, tensorflow, etc.
- Also not about latest nonsense on arXiv
- Good stuff beyond COMS 4771:
 - COMS 4252, 4773: Mathematical theory of learning
 - COMS 4774: Unsupervised learning
 - COMS 4775: Causal inference

About me

Professor Daniel Hsu

- Okay to call me "Daniel"!
- "Professor Hsu" also okay
 - "Professor Daniel" is a little weird
- At Columbia since 2013
- Previously at Microsoft Research, Rutgers, UPenn, UC San Diego, UC Berkeley, ...
- Research interests: algorithms, statistics, & combining the two
- Good at: LATEX-hacking
- Bad at: making slides

About you

- I assume you have fluency in
 - multivariable calculus,
 - linear algebra, and
 - elementary probability (no measure theory needed)
- ▶ I also assume you can read and write programs in Python
 - (and read online documentation to learn, e.g., how to do I/O with CSV files)
 - See Courseworks for a "Python basics" Jupyter notebook to brush up on Python, Numpy, etc.
- Let me know why you are interested in ML!
 - Part of HW 1.

Administrative stuff

- Website: https://www.cs.columbia.edu/~djhsu/ML
 - Schedule for office hours/lectures/homework/quizzes/exam
 - Syllabus
- Course format:
 - Lecture/recitation: online over Zoom
 - "On Campus" people: check email about in-person lectures
- Course assistants (CAs):
 - Andy, Andrea, Wonjun, Serena
 - Links for online office hours will be posted on Courseworks

Technology:

- Piazza: communicate with course staff (live Q&A and offline)
- Courseworks: retrieve assignments, quizzes, data files, etc.
- Gradescope: submit homework write-ups, code
- Slack: discussion with fellow classmates
- Disability services:
 - Please make arrangements with disability services ASAP

Academic rules of conduct

- See syllabus
- Cheating: don't do it
 - If unsure about something, ask!
 - Consequence is automatic fail
- Cheating out of desperation is also cheating
 - Instead: get help early
 - We are here to help
- ▶ Okay to work on homework in groups of ≤ 3
 - No collaboration across groups
 - No diffusion of responsibility
- No collaboration at all on quizzes or exams

Reading assignments

- There are some required reading assignments (mostly from handouts posted on website)
- Unfortunately, most textbooks on ML are not appropriate for this course
 - Closest is "A Course in Machine Learning" by Daumé
 - I have selected some optional reading assignments from a few books that may be used to supplement the lectures
 - All books available online

Questions?