Ensemble methods

COMS 4721 Spring 2022
Daniel Hsu
Model averaging

Common strategy in ML: Combine multiple predictors

- Called ensemble methods

Simplest ensemble method for regression: (uniform) model averaging

Given predictors f_1, f_2, \ldots, f_M, return the ensemble predictor f_{avg} defined by

$$f_{\text{avg}}(\vec{x}) := \frac{1}{M} \sum_{t=1}^{M} f_t(\vec{x})$$

Question: When is this preferable to model selection — i.e., (attempting to) pick the best of the f_t?
Common strategy in ML: Combine multiple predictors

- Called ensemble methods

Simplest ensemble method for regression: (uniform) model averaging

- Given predictors f_1, f_2, \ldots, f_M, return the ensemble predictor f_{avg} defined by

$$f_{\text{avg}}(\vec{x}) := \frac{1}{M} \sum_{t=1}^{M} f_t(\vec{x})$$
Model averaging

Common strategy in ML: Combine multiple predictors

- Called ensemble methods

Simplest ensemble method for regression: (uniform) model averaging

- Given predictors f_1, f_2, \ldots, f_M, return the ensemble predictor f_{avg} defined by

$$f_{\text{avg}}(\vec{x}) := \frac{1}{M} \sum_{t=1}^{M} f_t(\vec{x})$$

Question: When is this preferable to model selection — i.e., (attempting to) pick the best of the f_t?
Mean squared error of model averaging

Theorem. Let \(f_{\text{avg}} := \frac{1}{M} \sum_{t=1}^{M} f_t \). Then

\[
\mathbb{E}[(f_{\text{avg}}(\mathbf{X}) - Y)^2] = \frac{1}{M} \sum_{t=1}^{M} \mathbb{E}[(f_t(\mathbf{X}) - Y)^2] - \frac{1}{2M^2} \sum_{s=1}^{M} \sum_{t=1}^{M} \mathbb{E}[(f_s(\mathbf{X}) - f_t(\mathbf{X}))^2]
\]

Model averaging is preferable to model selection if:

1. All \(f_t \)'s have similar MSE, and
2. All \(f_t \)'s predict very differently from each other

This may be the case if

▶ Same ML algorithm is used to obtain all \(f_t \)
▶ ML algorithm has "high variability"
Theorem. Let $f_{avg} := \frac{1}{M} \sum_{t=1}^{M} f_t$. Then

$$\mathbb{E}[(f_{avg}(\vec{X}) - Y)^2] = \frac{1}{M} \sum_{t=1}^{M} \mathbb{E}[(f_t(\vec{X}) - Y)^2] - \frac{1}{2M^2} \sum_{s=1}^{M} \sum_{t=1}^{M} \mathbb{E}[(f_s(\vec{X}) - f_t(\vec{X}))^2]$$

Model averaging is preferable to model selection if:

1. All f_t’s have similar MSE, and

 ▶ Same ML algorithm is used to obtain all f_t ▶ ML algorithm has “high variability”
Mean squared error of model averaging

Theorem. Let $f_{avg} := \frac{1}{M} \sum_{t=1}^{M} f_t$. Then

$$
\mathbb{E}[(f_{avg}(\vec{X}) - Y)^2] = \frac{1}{M} \sum_{t=1}^{M} \mathbb{E}[(f_t(\vec{X}) - Y)^2] - \frac{1}{2M^2} \sum_{s=1}^{M} \sum_{t=1}^{M} \mathbb{E}[(f_s(\vec{X}) - f_t(\vec{X}))^2]
$$

Model averaging is preferable to model selection if:

1. All f_t’s have similar MSE, and
2. All f_t’s predict very differently from each other
Mean squared error of model averaging

Theorem. Let $f_{avg} := \frac{1}{M} \sum_{t=1}^{M} f_t$. Then

$$
\mathbb{E}[(f_{avg}(\vec{X}) - Y)^2] = \frac{1}{M} \sum_{t=1}^{M} \mathbb{E}[(f_t(\vec{X}) - Y)^2] - \frac{1}{2M^2} \sum_{s=1}^{M} \sum_{t=1}^{M} \mathbb{E}[(f_s(\vec{X}) - f_t(\vec{X}))^2]
$$

Model averaging is preferable to model selection if:

1. All f_t’s have similar MSE, and
2. All f_t’s predict very differently from each other

This may be the case if

- Same ML algorithm is used to obtain all f_t
- ML algorithm has “high variability”
Hypothetical scenario

- Running (deterministic) ML algorithm on same training data M times is not helpful

Suppose instead we run ML algorithm on multiple (independent) training data sets S_1, S_2, \ldots, S_M

Takes advantage of "high variability" ML algorithms!

However, may not beat running ML algorithm once on M times as many training data!
Hypothetical scenario

- Running (deterministic) ML algorithm on same training data M times is not helpful
- Suppose instead we run ML algorithm on multiple (independent) training data sets S_1, S_2, \ldots, S_M
 - Takes advantage of “high variability” ML algorithms!
Hypothetical scenario

- Running (deterministic) ML algorithm on same training data M times is not helpful
- Suppose instead we run ML algorithm on multiple (independent) training data sets S_1, S_2, \ldots, S_M
 - Takes advantage of “high variability” ML algorithms!
- However, may not beat running ML algorithm once on M times as many training data!
“Faking” the multiple training data sets: Bagging

Main idea: Pretend the training data S is the original population of examples

Bootstrap aggregating (Bagging):

- Randomly sample M independent data sets $S_1^*, S_2^*, \ldots, S_M^*$ from S, each of size $n = |S|$
 - Each S_t^* is a bootstrap resampling of S
 - Use sampling-with-replacement
- Run ML algorithm on each S_t^* to get predictors f_1, f_2, \ldots, f_M
- Return $f_{avg} = \frac{1}{M} \sum_{t=1}^{M} f_t$

Leo Breiman Brad Efron
Random forests

Random forests: Bagging + variant of decision tree learning algorithm as the ML algorithm

- **Main idea**: Bagging with greedy training heuristic with stopping rule that leads to large-size trees
- **To increase “variability”, introduce additional randomness in learning algorithm**
- **Only change compared to original greedy training heuristic**: When finding best split for a tree node, instead of enumerating through all \(d \) features, only enumerate through a random subset of \(k \) features (Default: \(k = d/3 \), but this is a hyperparameter)
Random forests: Bagging + variant of decision tree learning algorithm as the ML algorithm

- Main idea: Bagging with greedy training heuristic with stopping rule that leads to large-size trees

Only change compared to original greedy training heuristic:
- When finding best split for a tree node, instead of enumerating through all d features, only enumerate through a random subset of k features (Default: $k = d/3$, but this is a hyperparameter)
Random forests

Random forests: Bagging + variant of decision tree learning algorithm as the ML algorithm

- Main idea: Bagging with greedy training heuristic with stopping rule that leads to large-size trees
- To increase “variability”, introduce additional randomness in learning algorithm

Leo Breiman Adele Cutler
Random forests: Bagging + variant of decision tree learning algorithm as the ML algorithm

- Main idea: Bagging with greedy training heuristic with stopping rule that leads to large-size trees
- To increase “variability”, introduce additional randomness in learning algorithm

Only change compared to original greedy training heuristic:
- When finding best split for a tree node, instead of enumerating through all d features, only enumerate through a random subset of k features
 (Default: $k = d/3$, but this is a hyperparameter)
Ensemble methods: General term for methods that combine multiple predictors

Model averaging: Advantageous when you have a collection of predictors of comparable quality but highly variable behavior

Bagging: Particular strategy to “simulate” a scenario where model averaging is advantageous
 - Random forests: Bagging + decision trees + extra randomness

Many other ensemble methods such as:
 - Non-uniform model averaging
 - Boosting
 - Stacking

which are all related to linear models!