Reductions

COMS 4721 Spring 2022
Daniel Hsu
Reductions in ML

- Some ML problems are apparently more “complex” than binary classification or regression
 - Multi-class classification (which bird is depicted in the image?)
 - Multi-label prediction (which birds are depicted in the image?)
 - Ranking search results
 - Parsing sentences
 - Online decision-making
 - . . .
Some ML problems are apparently more “complex” than binary classification or regression

- Multi-class classification (which bird is depicted in the image?)
- Multi-label prediction (which birds are depicted in the image?)
- Ranking search results
- Parsing sentences
- Online decision-making
- ...

Possible approach: **reduce** the “complex” problem to a “simpler” problem like binary classification or regression (or a bunch of such simpler problems)
Some ML problems are apparently more “complex” than binary classification or regression

- Multi-class classification (which bird is depicted in the image?)
- Multi-label prediction (which birds are depicted in the image?)
- Ranking search results
- Parsing sentences
- Online decision-making
- …

Possible approach: reduce the “complex” problem to a “simpler” problem like binary classification or regression (or a bunch of such simpler problems)

- E.g., To learn good ranking functions, exploit technology for learning binary classifiers

 Combine the learned binary classifiers to form a ranking function
Multi-class classification

Statistical model for multi-class classification:

- Outcome/label Y is random variable taking values in a finite, unordered set $\{1, 2, \ldots, K\}$
- Feature vector is a vector of d random variables $\vec{X} := (X_1, \ldots, X_d)$
- Joint distribution of (\vec{X}, Y) reflects the population of examples we anticipate encountering in the future for the present application

Distribution of Y models outcome of rolling a K-sided die (But values on die faces are ignored; may as well be "apple", "banana", "cantaloupe", etc.)
Statistical model for multi-class classification:

- Outcome/label Y is random variable taking values in a finite, unordered set $\{1, 2, \ldots, K\}$
- Feature vector is a vector of d random variables $\vec{X} := (X_1, \ldots, X_d)$
- Joint distribution of (\vec{X}, Y) reflects the population of examples we anticipate encountering in the future for the present application

- Distribution of Y models outcome of rolling a K-sided die
 (But values on die faces are ignored; may as well be “apple”, “banana”, “cantaloupe”, etc.)
Multi-class classification

Statistical model for multi-class classification:

- Outcome/label Y is random variable taking values in a finite, unordered set \{1, 2, \ldots, K\}
- Feature vector is a vector of d random variables $\vec{X} := (X_1, \ldots, X_d)$
- Joint distribution of (\vec{X}, Y) reflects the population of examples we anticipate encountering in the future for the present application

- Distribution of Y models outcome of rolling a K-sided die
 (But values on die faces are ignored; may as well be “apple”, “banana”, “cantaloupe”, etc.)
- Standard benchmark: Error rate (same as in binary classification)
One-against-all (a.k.a. one-versus-rest)

Pretend there are \(K \) binary classification problems

- \(\ell \)-th problem: class \(\ell \) is treated as “positive”; all other classes are treated as “negative”

- Use binary classification learning technology to learn \(K \) different binary classifiers \(\hat{f}_1, \hat{f}_2, \ldots, \hat{f}_K \): \(\mathbb{R}^d \to \{0, 1\} \)

- Combine these binary classifiers into a single multi-class classifier \(\hat{F} \): \(\mathbb{R}^d \to \{1, 2, \ldots, K\} \)

\[
\hat{F}(\vec{x}) = \text{arg max}_{\ell \in \{1, 2, \ldots, K\}} \hat{f}_\ell(\vec{x})
\]

OOPS: Only get correct prediction if all \(K \) binary classifiers work predict correctly!
Multi-class \rightarrow binary classification: One-against-all

One-against-all (a.k.a. one-versus-rest)

1. Pretend there are K binary classification problems

 ℓ-th problem: class ℓ is treated as “positive”; all other classes are treated as “negative”

OOPS: Only get correct prediction if all K binary classifiers work predict correctly!
Multi-class \rightarrow binary classification: One-against-all

One-against-all (a.k.a. one-versus-rest)

1. Pretend there are K binary classification problems

 ℓ-th problem: class ℓ is treated as "positive"; all other classes are treated as "negative"

2. Use binary classification learning technology to learn K different binary classifiers

 $\hat{f}_1, \hat{f}_2, \ldots, \hat{f}_K : \mathbb{R}^d \rightarrow \{0, 1\}$

OOPS: Only get correct prediction if all K binary classifiers work predict correctly!
Multi-class \rightarrow binary classification: One-against-all

One-against-all (a.k.a. one-versus-rest)

1. Pretend there are K binary classification problems

 ℓ-th problem: class ℓ is treated as “positive”; all other classes are treated as “negative”

2. Use binary classification learning technology to learn K different binary classifiers

 $\hat{f}_1, \hat{f}_2, \ldots, \hat{f}_K : \mathbb{R}^d \rightarrow \{0, 1\}$

3. Combine these binary classifiers into a single multi-class classifier $\hat{F} : \mathbb{R}^d \rightarrow \{1, 2, \ldots, K\}$

 $$\hat{F}(\vec{x}) = \arg \max_{\ell \in \{1, 2, \ldots, K\}} \hat{f}_\ell(\vec{x})$$

OOPS: Only get correct prediction if all K binary classifiers work predict correctly!
Multi-class \rightarrow binary classification: One-against-all

One-against-all (a.k.a. one-versus-rest)

1. Pretend there are K binary classification problems

 ℓ-th problem: class ℓ is treated as “positive”; all other classes are treated as “negative”

2. Use binary classification learning technology to learn K different binary classifiers

 $\hat{f}_1, \hat{f}_2, \ldots, \hat{f}_K : \mathbb{R}^d \rightarrow \{0, 1\}$

3. Combine these binary classifiers into a single multi-class classifier $\hat{F} : \mathbb{R}^d \rightarrow \{1, 2, \ldots, K\}$

 $$\hat{F}(\vec{x}) = \arg\max_{\ell \in \{1, 2, \ldots, K\}} \hat{f}_\ell(\vec{x})$$

OOPS: Only get correct prediction if all K binary classifiers work predict correctly!
Multi-class \rightarrow binary classification: One-against-all (attempt #2)

One-against-all (a.k.a. one-versus-rest)

1. Pretend there are K binary classification problems

2. Use conditional probability learning technology to learn K different conditional probability predictors \(\hat{\eta}_1, \hat{\eta}_2, \ldots, \hat{\eta}_K \):

 \[\mathbb{R}^d \rightarrow [0, 1] \] (predict cond. prob. of "positive" class)

3. Combine these predictors into a single multi-class classifier \(\hat{F} \):

 \[\mathbb{R}^d \rightarrow \{1, 2, \ldots, K\} \]

 \[\hat{F}(\vec{x}) = \arg \max_{\ell \in \{1, 2, \ldots, K\}} \hat{\eta}_\ell(\vec{x}) \]

Better than first attempt: Can tolerate some errors in conditional probability estimates!
One-against-all (a.k.a. one-versus-rest)

1. Pretend there are K binary classification problems

 ℓ-th problem: class ℓ is treated as “positive”; all other classes are treated as “negative”
One-against-all (a.k.a. one-versus-rest)

1. Pretend there are K binary classification problems

 ℓ-th problem: class ℓ is treated as “positive”; all other classes are treated as “negative”

2. Use *conditional probability* learning technology to learn K different conditional probability predictors $\hat{\eta}_1, \hat{\eta}_2, \ldots, \hat{\eta}_K : \mathbb{R}^d \rightarrow [0, 1]$ (predict cond. prob. of “positive” class)
Multi-class \rightarrow binary classification: One-against-all (attempt #2)

One-against-all (a.k.a. one-versus-rest)

1. Pretend there are K binary classification problems

 ℓ-th problem: class ℓ is treated as “positive”; all other classes are treated as “negative”

2. Use *conditional probability* learning technology to learn K different conditional probability predictors $\hat{\eta}_1, \hat{\eta}_2, \ldots, \hat{\eta}_K : \mathbb{R}^d \rightarrow [0, 1]$ (predict cond. prob. of “positive” class)

3. Combine these predictors into a single multi-class classifier $\hat{F} : \mathbb{R}^d \rightarrow \{1, 2, \ldots, K\}$

$$\hat{F}(\vec{x}) = \arg \max_{\ell \in \{1, 2, \ldots, K\}} \hat{\eta}_\ell(\vec{x})$$
Multi-class → binary classification: One-against-all (attempt #2)

One-against-all (a.k.a. one-versus-rest)

1. Pretend there are K binary classification problems

 ℓ-th problem: class ℓ is treated as “positive”; all other classes are treated as “negative”

2. Use conditional probability learning technology to learn K different conditional probability predictors $\hat{\eta}_1, \hat{\eta}_2, \ldots, \hat{\eta}_K : \mathbb{R}^d \rightarrow [0, 1]$ (predict cond. prob. of “positive” class)

3. Combine these predictors into a single multi-class classifier $\hat{F} : \mathbb{R}^d \rightarrow \{1, 2, \ldots, K\}$

 \[
 \hat{F}(\mathbf{x}) = \arg \max_{\ell \in \{1, 2, \ldots, K\}} \hat{\eta}_\ell(\mathbf{x})
 \]

Better than first attempt: Can tolerate some errors in conditional probability estimates!
Multi-class \rightarrow binary classification: Error correcting output codes

ECOC (Dietterich & Bakiri, JAIR 1995; Langford & Beygelzimer, COLT 2005)

1. Pretend there are T binary classification problems, defined by $S_1, S_2, \ldots, S_T \subseteq \{1, 2, \ldots, K\}$

 The t-th problem: classes in S_t are treated as "positive"; all other classes are treated as "negative"

2. Use conditional probability learning technology to learn K different conditional probability predictors $\hat{\eta}_1, \hat{\eta}_2, \ldots, \hat{\eta}_T$: $\mathbb{R}^d \rightarrow [0, 1]$ (predict cond. prob. of "positive" class)

3. Combine these predictors into a single multi-class classifier \hat{F}: $\mathbb{R}^d \rightarrow \{1, 2, \ldots, K\}$

 $\hat{F}(\vec{x}) = \text{decode}(\hat{\eta}_1(\vec{x}), \ldots, \hat{\eta}_T(\vec{x}))$

 Where $\text{decode}(\cdots)$ is based on how one decodes (possibly noisy) messages in telecommunications

 If S_1, S_2, \ldots, S_T are cleverly chosen, this is more robust to errors than OAA!

 ... BUT: Step 2 in ECOC might be harder than Step 2 in OAA
Multi-class \rightarrow binary classification: Error correcting output codes

ECOC (Dietterich & Bakiri, JAIR 1995; Langford & Beygelzimer, COLT 2005)

1. Pretend there are T binary classification problems, defined by $S_1, S_2, \ldots, S_T \subseteq \{1, 2, \ldots, K\}$

 t-th problem: classes in S_t are treated as “positive”; all other classes are treated as “negative”
Multi-class \rightarrow binary classification: Error correcting output codes

ECOC (Dietterich & Bakiri, JAIR 1995; Langford & Beygelzimer, COLT 2005)

1. Pretend there are T binary classification problems, defined by $S_1, S_2, \ldots S_T \subseteq \{1, 2, \ldots, K\}$

 t-th problem: classes in S_t are treated as “positive”; all other classes are treated as “negative”

2. Use conditional probability learning technology to learn K different conditional probability predictors $\hat{\eta}_1, \hat{\eta}_2, \ldots, \hat{\eta}_T : \mathbb{R}^d \rightarrow [0, 1]$ (predict cond. prob. of “positive” class)
Multi-class \rightarrow binary classification: Error correcting output codes

ECOC (Dietterich & Bakiri, JAIR 1995; Langford & Beygelzimer, COLT 2005)

1. Pretend there are T binary classification problems, defined by $S_1, S_2, \ldots S_T \subseteq \{1, 2, \ldots, K\}$
 - t-th problem: classes in S_t are treated as "positive"; all other classes are treated as "negative"

2. Use *conditional probability* learning technology to learn K different conditional probability predictors $\hat{\eta}_1, \hat{\eta}_2, \ldots , \hat{\eta}_T : \mathbb{R}^d \rightarrow [0, 1]$ (predict cond. prob. of "positive" class)

3. Combine these predictors into a single multi-class classifier $\hat{F} : \mathbb{R}^d \rightarrow \{1, 2, \ldots, K\}$
 \[
 \hat{F}(\vec{x}) = \text{decode}(\hat{\eta}_1(\vec{x}), \ldots , \hat{\eta}_T(\vec{x}))
 \]
 where decode(···) is based on how one decodes (possibly noisy) messages in telecommunications

... but: Step 2 in ECOC might be harder than Step 2 in OAA
Multi-class \rightarrow binary classification: Error correcting output codes

ECOC (Dietterich & Bakiri, JAIR 1995; Langford & Beygelzimer, COLT 2005)

1. Pretend there are T binary classification problems, defined by $S_1, S_2, \ldots S_T \subseteq \{1, 2, \ldots, K\}$

 *t-th problem: classes in S_t are treated as "positive"; all other classes are treated as "negative"

2. Use *conditional probability* learning technology to learn K different conditional probability predictors $\hat{\eta}_1, \hat{\eta}_2, \ldots, \hat{\eta}_T : \mathbb{R}^d \rightarrow [0, 1]$ (predict cond. prob. of "positive" class)

3. Combine these predictors into a single multi-class classifier $\hat{F} : \mathbb{R}^d \rightarrow \{1, 2, \ldots, K\}$

 $$\hat{F}(\vec{x}) = \text{decode}(\hat{\eta}_1(\vec{x}), \ldots, \hat{\eta}_T(\vec{x}))$$

 where decode(· · ·) is based on how one decodes (possibly noisy) messages in telecommunications

If S_1, S_2, \ldots, S_T are cleverly chosen, this is more robust to errors than OAA!
Multi-class \rightarrow binary classification: Error correcting output codes

ECOC (Dietterich & Bakiri, JAIR 1995; Langford & Beygelzimer, COLT 2005)

1. Pretend there are T binary classification problems, defined by $S_1, S_2, \ldots, S_T \subseteq \{1, 2, \ldots, K\}$

 t-th problem: classes in S_t are treated as “positive”; all other classes are treated as “negative”

2. Use *conditional probability* learning technology to learn K different conditional probability
 predictors $\hat{\eta}_1, \hat{\eta}_2, \ldots, \hat{\eta}_T : \mathbb{R}^d \rightarrow [0, 1]$ (predict cond. prob. of “positive” class)

3. Combine these predictors into a single multi-class classifier $\hat{F} : \mathbb{R}^d \rightarrow \{1, 2, \ldots, K\}$

 $$\hat{F}(\vec{x}) = \text{decode}(\hat{\eta}_1(\vec{x}), \ldots, \hat{\eta}_T(\vec{x}))$$

 where $\text{decode}(\cdots)$ is based on how one decodes (possibly noisy) messages in telecommunications

If S_1, S_2, \ldots, S_T are cleverly chosen, this is more robust to errors than OAA!

...BUT: Step 2 in ECOC might be harder than Step 2 in OAA
ECOC with Hadamard code

ECOC example:
Reducing multi-class classification with $K = 8$ classes to $T = 7$ binary classification problems

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>S_1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>S_2</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>S_3</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>S_4</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>S_5</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>S_6</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>S_7</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

Decoding (i.e., computing $\hat{F}(\vec{x})$ for new \vec{x}):
Compute vector of predictions $\vec{p} := (\hat{\eta}_1(\vec{x}), \hat{\eta}_2(\vec{x}), \ldots, \hat{\eta}_7(\vec{x}))$; return class whose column is closest to \vec{p}.
Other reductions

- Multi-label \rightarrow binary classification

 Similar to multi-class \rightarrow binary (OAA, ECOC)

- Ranking \rightarrow binary classification

 - Learn to predict $(\vec{x}_1, \vec{x}_2) \mapsto \text{"is } \vec{x}_1 \text{ better than } \vec{x}_2\text{"}$

 - Combine binary predictions using a robust version of comparison-based sorting

- ...