Kernel machines
Feature expansions $\varphi: \mathbb{R}^d \rightarrow \mathbb{R}^D$

- In modeling some problems, may not want to assume that target function (e.g., $f(\vec{x}) = \mathbb{E}[Y \mid \vec{X} = \vec{x}]$) is linear function of \vec{x}
- Feature expansions provide a way to “upgrade” linear regression / classification methods to produce non-linear functions / non-hyperplane decision boundaries
- What if you have very little prior knowledge about the target function?
Taylor’s theorem. For any continuous function $f : \mathbb{R} \to \mathbb{R}$, any $k \in \mathbb{N}$, and any $x_0 \in \mathbb{R}$, if f is “nice” enough, there exists a degree-k polynomial $P : \mathbb{R} \to \mathbb{R}$ such that

$$\lim_{x \to x_0} \frac{|f(x) - P(x)|}{|x - x_0|^k} = 0$$
Taylor’s theorem. For any continuous function $f : \mathbb{R} \to \mathbb{R}$, any $k \in \mathbb{N}$, and any $x_0 \in \mathbb{R}$, if f is “nice” enough, there exists a degree-k polynomial $P : \mathbb{R} \to \mathbb{R}$ such that

$$\lim_{x \to x_0} \frac{|f(x) - P(x)|}{|x - x_0|^k} = 0$$

▶ Polynomials can give good local approximations

Higher degree $k \to$ better approximation (assuming f is “nice” enough)

There’s also version for “nice” multivariate functions $f : \mathbb{R}^d \to \mathbb{R}$

Maybe not so impressive . . .
Taylor’s theorem. For any continuous function $f : \mathbb{R} \to \mathbb{R}$, any $k \in \mathbb{N}$, and any $x_0 \in \mathbb{R}$, if f is “nice” enough, there exists a degree-k polynomial $P : \mathbb{R} \to \mathbb{R}$ such that

$$\lim_{x \to x_0} \frac{|f(x) - P(x)|}{|x - x_0|^k} = 0$$

- Polynomials can give good local approximations
- Higher degree $k \to$ better approximation (assuming f is “nice” enough)
Why polynomials?

Taylor’s theorem. For any continuous function $f : \mathbb{R} \to \mathbb{R}$, any $k \in \mathbb{N}$, and any $x_0 \in \mathbb{R}$, if f is “nice” enough, there exists a degree-k polynomial $P : \mathbb{R} \to \mathbb{R}$ such that

$$
\lim_{x \to x_0} \frac{|f(x) - P(x)|}{|x - x_0|^k} = 0
$$

- Polynomials can give good **local** approximations
- Higher **degree** $k \to$ better approximation (assuming f is “nice” enough)
- There's also version for “nice” multivariate functions $f : \mathbb{R}^d \to \mathbb{R}$
Taylor’s theorem. For any continuous function $f: \mathbb{R} \to \mathbb{R}$, any $k \in \mathbb{N}$, and any $x_0 \in \mathbb{R}$, if f is “nice” enough, there exists a degree-k polynomial $P: \mathbb{R} \to \mathbb{R}$ such that

$$
\lim_{x \to x_0} \frac{|f(x) - P(x)|}{|x - x_0|^k} = 0
$$

- Polynomials can give good **local** approximations
- Higher degree $k \to$ better approximation (assuming f is “nice” enough)
- There’s also version for “nice” multivariate functions $f: \mathbb{R}^d \to \mathbb{R}$

Maybe not so impressive . . .
Really, why polynomials?

Weierstrass approximation theorem. For any continuous function \(f : \mathbb{R} \to \mathbb{R} \), any bounded interval \([a, b] \subset \mathbb{R}\), and any \(\varepsilon > 0 \), there exists a polynomial \(P : \mathbb{R} \to \mathbb{R} \) such that

\[
\max_{x \in [a, b]} |f(x) - P(x)| \leq \varepsilon
\]

Polynomials give good approximations uniformly over a bounded interval (!). Degree of \(P \) may need to grow with \(\frac{1}{\varepsilon} \). There's also version for multivariate functions \(f : \mathbb{R}^d \to \mathbb{R} \).

Upshot: Even with little information about target function, can still hope to get good approximations using polynomials of high-enough degree.
Really, why polynomials?

Weierstrass approximation theorem. For any continuous function $f: \mathbb{R} \to \mathbb{R}$, any bounded interval $[a, b] \subset \mathbb{R}$, and any $\varepsilon > 0$, there exists a polynomial $P: \mathbb{R} \to \mathbb{R}$ such that

$$\max_{x \in [a, b]} |f(x) - P(x)| \leq \varepsilon$$

- Polynomials give good approximations **uniformly over a bounded interval** (!)
Really, why polynomials?

Weierstrass approximation theorem. For any continuous function $f: \mathbb{R} \to \mathbb{R}$, any bounded interval $[a, b] \subset \mathbb{R}$, and any $\varepsilon > 0$, there exists a polynomial $P: \mathbb{R} \to \mathbb{R}$ such that

$$\max_{x \in [a, b]} |f(x) - P(x)| \leq \varepsilon$$

- Polynomials give good approximations **uniformly over a bounded interval** (!)
- Degree of P may need to grow with $1/\varepsilon$
Weierstrass approximation theorem. For any continuous function $f : \mathbb{R} \rightarrow \mathbb{R}$, any bounded interval $[a, b] \subset \mathbb{R}$, and any $\varepsilon > 0$, there exists a polynomial $P : \mathbb{R} \rightarrow \mathbb{R}$ such that

$$\max_{x \in [a,b]} |f(x) - P(x)| \leq \varepsilon$$

- Polynomials give good approximations **uniformly over a bounded interval** (!)
- Degree of P may need to grow with $1/\varepsilon$
- There's also version for multivariate functions $f : \mathbb{R}^d \rightarrow \mathbb{R}$
Really, why polynomials?

Weierstrass approximation theorem. For any continuous function $f: \mathbb{R} \to \mathbb{R}$, any bounded interval $[a, b] \subset \mathbb{R}$, and any $\varepsilon > 0$, there exists a polynomial $P: \mathbb{R} \to \mathbb{R}$ such that

$$\max_{x \in [a, b]} |f(x) - P(x)| \leq \varepsilon$$

- Polynomials give good approximations **uniformly over a bounded interval** (!)
- Degree of P may need to grow with $1/\varepsilon$
- There’s also version for multivariate functions $f: \mathbb{R}^d \to \mathbb{R}$

Upshot: Even with little information about target function, can still hope to get good approximations using polynomials of high-enough degree
Caveat:

- In standard IID model, OLS with feature expansion may have bad MSE unless

\[\text{sample size} \gg \text{dimension of feature expansion} \]
Caveat:

- In standard IID model, OLS with feature expansion may have bad MSE unless sample size \gg dimension of feature expansion

- Dimension of degree-k polynomial expansion (in \mathbb{R}^d): $\Theta(d^k)$

Issue that still remains: Computation
Caveat:

▶ In standard IID model, OLS with feature expansion may have bad MSE unless sample size \gg dimension of feature expansion

▶ Dimension of degree-k polynomial expansion (in \mathbb{R}^d): $\Theta(d^k)$

▶ Saving grace: inductive bias (e.g., data augmentation, margins)
Caveat:

- In standard IID model, OLS with feature expansion may have bad MSE unless sample size \gg dimension of feature expansion

 - Dimension of degree-k polynomial expansion (in \mathbb{R}^d): $\Theta(d^k)$

- Saving grace: inductive bias (e.g., data augmentation, margins)

Issue that still remains: Computation
Trick to compute dot products quickly (simple case)

Quadratic expansion $\varphi: \mathbb{R}^2 \to \mathbb{R}^6$:

$$\varphi(x) := (1, \sqrt{2}x_1, \sqrt{2}x_2, x_1^2, x_2^2, \sqrt{2}x_1x_2)$$

(Don’t mind the $\sqrt{2}$’s)
Trick to compute dot products quickly (simple case)

Quadratic expansion $\varphi: \mathbb{R}^2 \rightarrow \mathbb{R}^6$:

$$\varphi(x) := (1, \sqrt{2}x_1, \sqrt{2}x_2, x_1^2, x_2^2, \sqrt{2}x_1x_2)$$

(Don’t mind the $\sqrt{2}$’s)

Basic operation needed in feature space: **Dot products** $\varphi(x) \cdot \varphi(z)$

$$\varphi(x) \cdot \varphi(z) = 1 + 2x_1z_1 + 2x_2z_2 + x_1^2z_1^2 + x_2^2z_2^2 + 2x_1z_1x_2z_2 \quad (6 \text{ terms to add})$$
Trick to compute dot products quickly (simple case)

Quadratic expansion $\varphi: \mathbb{R}^2 \to \mathbb{R}^6$:

$$
\varphi(\vec{x}) := (1, \sqrt{2}x_1, \sqrt{2}x_2, x_1^2, x_2^2, \sqrt{2}x_1x_2)
$$

(Don’t mind the $\sqrt{2}$’s)

Basic operation needed in feature space: **Dot products** $\varphi(\vec{x}) \cdot \varphi(\vec{z})$

$$
\varphi(\vec{x}) \cdot \varphi(\vec{z}) = 1 + 2x_1z_1 + 2x_2z_2 + x_1^2z_1^2 + x_2^2z_2^2 + 2x_1z_1x_2z_2 \quad (6 \text{ terms to add})
$$

$$
= 1 + 2(x_1z_1 + x_2z_2) + (x_1z_1 + x_2z_2)^2
$$

Some (small) savings! But what about in \mathbb{R}^d?
Trick to compute dot products quickly (simple case)

Quadratic expansion $\phi: \mathbb{R}^2 \rightarrow \mathbb{R}^6$:

$$\phi(\vec{x}) := (1, \sqrt{2}x_1, \sqrt{2}x_2, x_1^2, x_2^2, \sqrt{2}x_1x_2)$$

(Don’t mind the $\sqrt{2}$’s)

Basic operation needed in feature space: **Dot products** $\phi(\vec{x}) \cdot \phi(\vec{z})$

$$\phi(\vec{x}) \cdot \phi(\vec{z}) = 1 + 2x_1z_1 + 2x_2z_2 + x_1^2z_1^2 + x_2^2z_2^2 + 2x_1z_1x_2z_2 \quad \text{(6 terms to add)}$$

$$= 1 + 2(x_1z_1 + x_2z_2) + (x_1z_1 + x_2z_2)^2 \quad \text{(3 terms to add)}$$

$$= (1 + x_1z_1 + x_2z_2)^2$$
Trick to compute dot products quickly (simple case)

Quadratic expansion $\varphi: \mathbb{R}^2 \rightarrow \mathbb{R}^6$:

$$\varphi(\vec{x}) := (1, \sqrt{2}x_1, \sqrt{2}x_2, x_1^2, x_2^2, \sqrt{2}x_1x_2)$$

(Don’t mind the $\sqrt{2}$’s)

Basic operation needed in feature space: **Dot products** $\varphi(\vec{x}) \cdot \varphi(\vec{z})$

$$\varphi(\vec{x}) \cdot \varphi(\vec{z}) = 1 + 2x_1z_1 + 2x_2z_2 + x_1^2z_1^2 + x_2^2z_2^2 + 2x_1z_1x_2z_2 \quad (6 \text{ terms to add})$$

$$= 1 + 2(x_1z_1 + x_2z_2) + (x_1z_1 + x_2z_2)^2 \quad (3 \text{ terms to add})$$

$$= (1 + x_1z_1 + x_2z_2)^2$$

$$= (1 + \vec{x} \cdot \vec{z})^2$$

Some (small) savings! But what about in \mathbb{R}^d?
Trick to compute dot products quickly, again

Quadratic expansion \(\varphi : \mathbb{R}^d \rightarrow \mathbb{R}^D \) where \(D = 1 + 2d + \binom{d}{2} = \Theta(d^2) \):

\[
\varphi(x) := (1, \sqrt{2}x_1, \ldots, \sqrt{2}x_d, x_1^2, \ldots, x_d^2, \sqrt{2}x_1x_2, \ldots, \sqrt{2}x_{d-1}x_d)
\]

- \(d \) linear terms
- \(d \) square terms
- \(\binom{d}{2} \) cross terms

Dot products \(\varphi(x) \cdot \varphi(z) \):

\[
\varphi(x) \cdot \varphi(z) = (1 + x \cdot z)^2 \text{ (only } d+1 \text{ terms to add)}
\]

Naïve implementation to compute dot product: \(\Theta(d^2) \) time; Using the trick: \(\Theta(d) \) time.

Degree-\(k \) polynomial expansion \(\varphi : \mathbb{R}^d \rightarrow \mathbb{R}^D \) where \(D = \Theta(d^k) \):

\[
\varphi(x) := \text{ all possible monomials over } x_1, \ldots, x_d \text{ of degree } \leq k
\]

Dot products \(\varphi(x) \cdot \varphi(z) \):

\[
\varphi(x) \cdot \varphi(z) = (1 + x \cdot z)^k \text{ (only } d+1 \text{ terms to add)}
\]

Naïve implementation to compute dot product: \(\Theta(d^k) \) time; Using the trick: \(\Theta(d) \) time.

But how about dot products between \(\varphi(x) \) and weight vector \(\varphi \in \mathbb{R}^D \)?
Trick to compute dot products quickly, again

Quadratic expansion $\bar{\varphi}: \mathbb{R}^d \to \mathbb{R}^D$ where $D = 1 + 2d + \binom{d}{2} = \Theta(d^2)$:

\[
\bar{\varphi}(\bar{x}) := \left(1, \sqrt{2}x_1, \ldots, \sqrt{2}x_d, x_1^2, \ldots, x_d^2, \sqrt{2}x_1x_2, \ldots, \sqrt{2}x_{d-1}x_d\right)
\]

d linear terms d square terms $\binom{d}{2}$ cross terms

Dot products $\bar{\varphi}(\bar{x}) \cdot \bar{\varphi}(\bar{z})$:

\[
\bar{\varphi}(\bar{x}) \cdot \bar{\varphi}(\bar{z}) = (1 + \bar{x} \cdot \bar{z})^2 \quad \text{(only } d+1 \text{ terms to add)}
\]
Trick to compute dot products quickly, again

Quadratic expansion \(\varphi: \mathbb{R}^d \to \mathbb{R}^D \) where \(D = 1 + 2d + \binom{d}{2} = \Theta(d^2) \):

\[
\varphi(x) := (1, \sqrt{2}x_1, \ldots, \sqrt{2}x_d, x_1^2, \ldots, x_d^2, \sqrt{2}x_1x_2, \ldots, \sqrt{2}x_{d-1}x_d)
\]

\(d \) linear terms \(d \) square terms \(\binom{d}{2} \) cross terms

Dot products \(\varphi(x) \cdot \varphi(z) \):

\[
\varphi(x) \cdot \varphi(z) = (1 + x \cdot z)^2 \quad \text{(only} \ d + 1 \ \text{terms to add)}
\]

Naïve implementation to compute dot product: \(\Theta(d^2) \) time; Using the trick: \(\Theta(d) \)
Trick to compute dot products quickly, again

Quadratic expansion $\varphi: \mathbb{R}^d \rightarrow \mathbb{R}^D$ where $D = 1 + 2d + \binom{d}{2} = \Theta(d^2)$:

$$\varphi(\vec{x}) := (1, \sqrt{2}x_1, \ldots, \sqrt{2}x_d, x_1^2, \ldots, x_d^2, \sqrt{2}x_1x_2, \ldots, \sqrt{2}x_{d-1}x_d)$$

- d linear terms
- d square terms
- $\binom{d}{2}$ cross terms

Dot products $\varphi(\vec{x}) \cdot \varphi(\vec{z})$:

$$\varphi(\vec{x}) \cdot \varphi(\vec{z}) = (1 + \vec{x} \cdot \vec{z})^2 \quad \text{(only } d + 1 \text{ terms to add)}$$

Naïve implementation to compute dot product: $\Theta(d^2)$ time; Using the trick: $\Theta(d)$

Degree-k polynomial expansion $\tilde{\varphi}: \mathbb{R}^d \rightarrow \mathbb{R}^D$ where $D = \Theta(d^k)$:

$$\tilde{\varphi}(\vec{x}) := (\text{all possible monomials over } x_1, \ldots, x_d \text{ of degree } \leq k)$$

But how about dot products between $\varphi(\vec{x})$ and weight vector $\vec{w} \in \mathbb{R}^D$?
Trick to compute dot products quickly, again

Quadratic expansion $\varphi : \mathbb{R}^d \rightarrow \mathbb{R}^D$ where $D = 1 + 2d + \binom{d}{2} = \Theta(d^2)$:

$$\varphi(x) := (1, \sqrt{2}x_1, \ldots, \sqrt{2}x_d, x_1^2, \ldots, x_d^2, \sqrt{2}x_1x_2, \ldots, \sqrt{2}x_{d-1}x_d)$$

with d linear terms, d square terms, and $\binom{d}{2}$ cross terms.

Dot products $\varphi(x) \cdot \varphi(z)$:

$$\varphi(x) \cdot \varphi(z) = (1 + x \cdot z)^2 \quad \text{(only } d + 1 \text{ terms to add)}$$

Naïve implementation to compute dot product: $\Theta(d^2)$ time; Using the trick: $\Theta(d)$

Degree-k polynomial expansion $\varphi : \mathbb{R}^d \rightarrow \mathbb{R}^D$ where $D = \Theta(d^k)$:

$$\varphi(x) := \text{(all possible monomials over } x_1, \ldots, x_d \text{ of degree } \leq k)$$

Dot products $\varphi(x) \cdot \varphi(z)$:

$$\varphi(x) \cdot \varphi(z) = (1 + x \cdot z)^k \quad \text{(only } d + 1 \text{ terms to add)}$$

But how about dot products between $\varphi(x)$ and weight vector $\mathbf{w} \in \mathbb{R}^D$?
Trick to compute dot products quickly, again

Quadratic expansion $\varphi: \mathbb{R}^d \rightarrow \mathbb{R}^D$ where $D = 1 + 2d + \binom{d}{2} = \Theta(d^2)$:

$$\varphi(x) := (1, \sqrt{2}x_1, \ldots, \sqrt{2}x_d, x_1^2, \ldots, x_d^2, \sqrt{2}x_1x_2, \ldots, \sqrt{2}x_{d-1}x_d)$$

d linear terms \quad d square terms \quad $\binom{d}{2}$ cross terms

Dot products $\varphi(x) \cdot \varphi(z)$:

$$\varphi(x) \cdot \varphi(z) = (1 + \langle x, z \rangle)^2 \quad \text{(only } d + 1 \text{ terms to add)}$$

Naïve implementation to compute dot product: $\Theta(d^2)$ time; Using the trick: $\Theta(d)$

Degree-k polynomial expansion $\varphi: \mathbb{R}^d \rightarrow \mathbb{R}^D$ where $D = \Theta(d^k)$:

$$\varphi(x) := \text{(all possible monomials over } x_1, \ldots, x_d \text{ of degree } \leq k)$$

Dot products $\varphi(x) \cdot \varphi(z)$:

$$\varphi(x) \cdot \varphi(z) = (1 + \langle x, z \rangle)^k \quad \text{(only } d + 1 \text{ terms to add)}$$

Naïve implementation to compute dot product: $\Theta(d^k)$ time; Using the trick: $\Theta(d)$

But how about dot products between $\varphi(x)$ and weight vector $\varphi(z) \in \mathbb{R}^D$?
Trick to compute dot products quickly, again

Quadratic expansion $\vec{\phi}: \mathbb{R}^d \rightarrow \mathbb{R}^D$ where $D = 1 + 2d + \binom{d}{2} = \Theta(d^2)$:

$$
\vec{\phi}(\vec{x}) := (1, \sqrt{2}x_1, \ldots, \sqrt{2}x_d, x_1^2, \ldots, x_d^2, \sqrt{2}x_1x_2, \ldots, \sqrt{2}x_{d-1}x_d)
$$

Dot products $\vec{\phi}(\vec{x}) \cdot \vec{\phi}(\vec{z})$:

$$
\vec{\phi}(\vec{x}) \cdot \vec{\phi}(\vec{z}) = (1 + \vec{x} \cdot \vec{z})^2 \quad \text{(only } d+1 \text{ terms to add)}
$$

Naïve implementation to compute dot product: $\Theta(d^2)$ time; Using the trick: $\Theta(d)$

Degree-k polynomial expansion $\vec{\phi}: \mathbb{R}^d \rightarrow \mathbb{R}^D$ where $D = \Theta(d^k)$:

$$
\vec{\phi}(\vec{x}) := \text{(all possible monomials over } x_1, \ldots, x_d \text{ of degree } \leq k)
$$

Dot products $\vec{\phi}(\vec{x}) \cdot \vec{\phi}(\vec{z})$:

$$
\vec{\phi}(\vec{x}) \cdot \vec{\phi}(\vec{z}) = (1 + \vec{x} \cdot \vec{z})^k \quad \text{(only } d+1 \text{ terms to add)}
$$

Naïve implementation to compute dot product: $\Theta(d^k)$ time; Using the trick: $\Theta(d)$

But how about dot products between $\vec{\phi}(\vec{x})$ and weight vector $\vec{w} \in \mathbb{R}^D$?
Living in the span

Observation: Many “linear” learning methods yield \vec{w} in the **span of the training feature vectors**

- OLS, ridge regression, PCR, SVM, PCA
- Gradient descent, SGD (on SSE & SLL objectives) if initialized at zero
- Perceptron, Online Perceptron

When used with feature expansion $\vec{\phi}$:

$\vec{w} = \sum_{i=1}^{n} \alpha_i \vec{\phi}(\vec{x}_i)$

where $(\vec{x}_1, y_1), \ldots, (\vec{x}_n, y_n)$ are the training examples

I.e., there's an implicit representation of \vec{w} in terms of $\vec{\alpha} := (\alpha_1, \ldots, \alpha_n) \in \mathbb{R}^n$ & training examples

To compute $\vec{\phi}(\vec{x}) \cdot \vec{w}$, can use $\vec{\phi}(\vec{x}) \cdot \vec{w} = \sum_{i=1}^{n} \alpha_i \vec{\phi}(\vec{x}) \cdot \vec{\phi}(\vec{x}_i)$

But how do you get the α_i's?
Observation: Many “linear” learning methods yield \vec{w} in the span of the training feature vectors

- OLS, ridge regression, PCR, SVM, PCA
- Gradient descent, SGD (on SSE & SLL objectives) if initialized at zero
- Perceptron, Online Perceptron

When used with feature expansion $\varphi: \mathbb{R}^d \rightarrow \mathbb{R}^D$, this means there exist $\alpha_1, \ldots, \alpha_n \in \mathbb{R}$ such that

$$\vec{w} = \sum_{i=1}^{n} \alpha_i \varphi(\vec{x}_i)$$

where $(\vec{x}_1, y_1), \ldots, (\vec{x}_n, y_n)$ are the training examples

I.e., there’s an implicit representation of \vec{w} in terms of $\vec{\alpha} := (\alpha_1, \ldots, \alpha_n) \in \mathbb{R}^n$ & training examples
Observation: Many “linear” learning methods yield \vec{w} in the span of the training feature vectors

- OLS, ridge regression, PCR, SVM, PCA
- Gradient descent, SGD (on SSE & SLL objectives) if initialized at zero
- Perceptron, Online Perceptron

When used with feature expansion $\varphi: \mathbb{R}^d \rightarrow \mathbb{R}^D$, this means there exist $\alpha_1, \ldots, \alpha_n \in \mathbb{R}$ such that

$$\vec{w} = \sum_{i=1}^{n} \alpha_i \varphi(\vec{x}_i)$$

where $(\vec{x}_1, y_1), \ldots, (\vec{x}_n, y_n)$ are the training examples

I.e., there’s an implicit representation of \vec{w} in terms of $\vec{\alpha} := (\alpha_1, \ldots, \alpha_n) \in \mathbb{R}^n$ & training examples

To compute $\varphi(\vec{x}) \cdot \vec{w}$, can use

$$\varphi(\vec{x}) \cdot \vec{w} = \sum_{i=1}^{n} \alpha_i (\varphi(\vec{x}) \cdot \varphi(\vec{x}_i))$$
Observation: Many “linear” learning methods yield \vec{w} in the **span of the training feature vectors**

- OLS, ridge regression, PCR, SVM, PCA
- Gradient descent, SGD (on SSE & SLL objectives) if initialized at zero
- Perceptron, Online Perceptron

When used with feature expansion $\varphi: \mathbb{R}^d \rightarrow \mathbb{R}^D$, this means there exist $\alpha_1, \ldots, \alpha_n \in \mathbb{R}$ such that

$$
\vec{w} = \sum_{i=1}^{n} \alpha_i \varphi(\vec{x}_i)
$$

where $(\vec{x}_1, y_1), \ldots, (\vec{x}_n, y_n)$ are the training examples

I.e., there’s an **implicit representation** of \vec{w} in terms of $\vec{\alpha} := (\alpha_1, \ldots, \alpha_n) \in \mathbb{R}^n$ & training examples

To compute $\varphi(\vec{x}) \cdot \vec{w}$, can use

$$
\varphi(\vec{x}) \cdot \vec{w} = \sum_{i=1}^{n} \alpha_i \left(\varphi(\vec{x}) \cdot \varphi(\vec{x}_i) \right)
$$

But how do you get the α_i’s?
Perceptron with feature expansion

Given: Training data \((\vec{x}_1, y_1), \ldots, (\vec{x}_n, y_n) \in \mathbb{R}^d \times \{0, 1\}\)

Perceptron with feature map \(\vec{\phi}: \mathbb{R}^d \rightarrow \mathbb{R}^D\)

- Initialize \(\vec{w} := \vec{0} \in \mathbb{R}^D\)
- Loop:
 - Pick any example \((\vec{x}_i, y_i)\) that is misclassified by \(\vec{w}\)
 - (If there is no such example, halt and return \(\vec{w}\))
 - Update \(\vec{w}\):
 \[
 \vec{w} := \begin{cases}
 \vec{w} + \vec{\phi}(\vec{x}_i) & \text{if } y_i = 1 \\
 \vec{w} - \vec{\phi}(\vec{x}_i) & \text{if } y_i = 0
 \end{cases}
 \]
Perceptron with feature expansion

Given: Training data \((\vec{x}_1, y_1), \ldots, (\vec{x}_n, y_n) \in \mathbb{R}^d \times \{0, 1\}\)

Perceptron with feature map \(\vec{\varphi}: \mathbb{R}^d \rightarrow \mathbb{R}^D\)

- Initialize \(\vec{w} := \vec{0} \in \mathbb{R}^D\)
- Loop:
 - Pick any example \((\vec{x}_i, y_i)\) that is misclassified by \(\vec{w}\)
 - (If there is no such example, halt and return \(\vec{w}\))
 - Update \(\vec{w}\):
 \[
 \vec{w} := \begin{cases}
 \vec{w} + \vec{\varphi}(\vec{x}_i) & \text{if } y_i = 1 \\
 \vec{w} - \vec{\varphi}(\vec{x}_i) & \text{if } y_i = 0
 \end{cases}
 \]
- Initialize \(\alpha_i := 0\) for all \(i = 1, \ldots, n\)
Perceptron with feature expansion

Given: Training data \((\vec{x}_1, y_1), \ldots, (\vec{x}_n, y_n) \in \mathbb{R}^d \times \{0, 1\}\)

> **Perceptron** with feature map \(\varphi: \mathbb{R}^d \rightarrow \mathbb{R}^D\)

 > Initialize \(\vec{w} := \vec{0} \in \mathbb{R}^D\)

 > Loop:

 > Pick any example \((\vec{x}_i, y_i)\) that is misclassified by \(\vec{w}\)

 > (If there is no such example, halt and return \(\vec{w}\))

 > Update \(\vec{w}\):

 \[
 \vec{w} := \begin{cases}
 \vec{w} + \varphi(\vec{x}_i) & \text{if } y_i = 1 \\
 \vec{w} - \varphi(\vec{x}_i) & \text{if } y_i = 0
 \end{cases}
 \]

 > Initialize \(\alpha_i := 0\) for all \(i = 1, \ldots, n\)

 > Update with example \((\vec{x}_i, y_i)\):

 \[
 \alpha_i := \begin{cases}
 \alpha_i + 1 & \text{if } y_i = 1 \\
 \alpha_i - 1 & \text{if } y_i = 0
 \end{cases}
 \]
Ridge regression with feature expansion

Given: Training data \((\vec{x}_1, y_1), \ldots, (\vec{x}_n, y_n) \in \mathbb{R}^d \times \mathbb{R}\)

\[
A := \begin{bmatrix}
\vec{\phi}(\vec{x}_1)^T \\
\vdots \\
\vec{\phi}(\vec{x}_n)^T
\end{bmatrix} \in \mathbb{R}^{n \times D}, \quad \vec{b} := \begin{bmatrix}
y_1 \\
\vdots \\
y_n
\end{bmatrix} \in \mathbb{R}^n
\]
Ridge regression with feature expansion

Given: Training data $(\vec{x}_1, y_1), \ldots, (\vec{x}_n, y_n) \in \mathbb{R}^d \times \mathbb{R}$

$$A := \begin{bmatrix} \leftarrow \vec{\phi}(\vec{x}_1)^T & \rightarrow \\ \vdots \\ \leftarrow \vec{\phi}(\vec{x}_n)^T & \rightarrow \end{bmatrix} \in \mathbb{R}^{n \times D}, \quad \vec{b} := \begin{bmatrix} y_1 \\ \vdots \\ y_n \end{bmatrix} \in \mathbb{R}^n$$

Fact: $(A^T A + \lambda I)^{-1} A^T = A^T (AA^T + \lambda I)^{-1}$ for any $\lambda > 0$
Ridge regression with feature expansion

Given: Training data \((\vec{x}_1, y_1), \ldots, (\vec{x}_n, y_n) \in \mathbb{R}^d \times \mathbb{R}\)

\[
A := \begin{bmatrix}
\vec{\varphi}(\vec{x}_1)^T \\
\vdots \\
\vec{\varphi}(\vec{x}_n)^T
\end{bmatrix} \in \mathbb{R}^{n \times D}, \quad \vec{b} := \begin{bmatrix} y_1 \\ \vdots \\ y_n \end{bmatrix} \in \mathbb{R}^n
\]

Fact: \((A^TA + \lambda I)^{-1}A^T = A^T(AA^T + \lambda I)^{-1}\) for any \(\lambda > 0\)

Therefore, ridge regression solution \(\vec{w}\) can be written as

\[
\vec{w} = \underbrace{A^T (AA^T + \lambda I)^{-1}}_{\vec{\alpha}} \vec{b} = \sum_{i=1}^n \alpha_i \vec{\varphi}(\vec{x}_i)
\]
Ridge regression with feature expansion

Given: Training data \((\vec{x}_1, y_1), \ldots, (\vec{x}_n, y_n) \in \mathbb{R}^d \times \mathbb{R}\)

\[
A := \begin{bmatrix}
\vec{\varphi}(\vec{x}_1)^T & \rightarrow \\
\vdots \\
\vec{\varphi}(\vec{x}_n)^T & \rightarrow
\end{bmatrix} \in \mathbb{R}^{n \times D}, \quad \vec{b} := \begin{bmatrix} y_1 \\ \vdots \\ y_n \end{bmatrix} \in \mathbb{R}^n
\]

Fact: \((A^T A + \lambda I)^{-1} A^T = A^T (A A^T + \lambda I)^{-1}\) for any \(\lambda > 0\)

Therefore, ridge regression solution \(\vec{w}\) can be written as

\[
\vec{w} = A^T \underbrace{(A A^T + \lambda I)^{-1} \vec{b}}_{\vec{\alpha}} = \sum_{i=1}^{n} \alpha_i \vec{\varphi}(\vec{x}_i)
\]

Moreover, matrix \(K := A A^T \in \mathbb{R}^{n \times n}\) is matrix of inner products (a.k.a. Gram matrix)

\[
K_{i,j} = \vec{\varphi}(\vec{x}_i) \cdot \vec{\varphi}(\vec{x}_j)
\]
Ridge regression with feature expansion

Given: Training data $(\vec{x}_1, y_1), \ldots, (\vec{x}_n, y_n) \in \mathbb{R}^d \times \mathbb{R}$

$$A := \begin{bmatrix} \phi(\vec{x}_1)^T \\ \vdots \\ \phi(\vec{x}_n)^T \end{bmatrix} \in \mathbb{R}^{n \times D}, \quad \vec{b} := \begin{bmatrix} y_1 \\ \vdots \\ y_n \end{bmatrix} \in \mathbb{R}^n$$

Fact: $(A^T A + \lambda I)^{-1} A^T = A^T (A A^T + \lambda I)^{-1}$ for any $\lambda > 0$

Therefore, ridge regression solution \vec{w} can be written as

$$\vec{w} = A^T \left(AA^T + \lambda I \right)^{-1} \vec{b} = \sum_{i=1}^{n} \alpha_i \phi(\vec{x}_i)$$

Moreover, matrix $K := AA^T \in \mathbb{R}^{n \times n}$ is matrix of inner products (a.k.a. **Gram matrix**)

$$K_{i,j} = \phi(\vec{x}_i) \cdot \phi(\vec{x}_j)$$

So, compute Gram matrix K and solve linear system $(K + \lambda I) \vec{\alpha} = \vec{b}$ for $\vec{\alpha}$
Comparing computational costs when using degree-k polynomial expansion (assume $d \ll n \ll d^k$):

- Ridge regression with explicit feature expansion:
 - Solving for \vec{w}: $O(n^2d^k)$ time
 - Each prediction: $O(d^k)$ time

- Ridge regression using implicit representation of \vec{w}:
 - Solving for $\vec{\alpha}$: $O(n^3)$ time
 - Each prediction: $O(nd)$ time
Comparing computational costs when using degree-k polynomial expansion (assume $d \ll n \ll d^k$):

- Ridge regression with explicit feature expansion
 - Solving for \vec{w}: $O(n^2 d^k)$ time
 - Each prediction: $O(d^k)$ time

- Ridge regression using implicit representation of \vec{w}
 - Solving for $\vec{\alpha}$: $O(n^3)$ time
 - Each prediction: $O(n d^k)$ time
Computation time

Comparing computational costs when using degree-\(k\) polynomial expansion (assume \(d \ll n \ll d^k\)):

- Ridge regression with explicit feature expansion
 - Solving for \(\vec{w}\): \(O(n^2 d^k)\) time
 - Each prediction: \(O(d^k)\) time

- Ridge regression using implicit representation of \(\vec{w}\):
 - Solving for \(\vec{\alpha}\): \(O(n^3)\) time
 - Each prediction: \(O(nd)\) time
Many other feature expansions (besides polynomial expansion) have a similar computational trick to compute dot products.
Many other feature expansions (besides polynomial expansion) have a similar computational trick to compute dot products.

Conversely, many easy-to-compute “similarity functions” $k(\vec{x}, \vec{z})$ are, in fact, the dot product between certain feature expansions $\vec{\varphi}(\vec{x})$ and $\vec{\varphi}(\vec{z})$.

Such similarity functions are called (positive definite) kernels.

E.g., Gaussian kernel

$$k(\vec{x}, \vec{z}) = \exp\left(-\frac{\|\vec{x} - \vec{z}\|^2}{2\sigma^2}\right)$$

where $\sigma > 0$ is the “bandwidth” of the kernel (a hyperparameter).

Technically, the feature expansion $\vec{\varphi}: \mathbb{R}^d \rightarrow \mathbb{R}^D$ may need $D = \infty$.

Not a problem when using kernel methods (i.e., versions of ridge regression, Perceptron, etc. that only compute $\vec{\alpha} = (\alpha_1, \ldots, \alpha_n)$).

Resulting predictors with implicit representation $g(\vec{x}) = \sum_{i=1}^{n} \alpha_i k(\vec{x}, \vec{x}_i)$ are called kernel machines.
Many other feature expansions (besides polynomial expansion) have a similar computational trick to compute dot products.

Conversely, many easy-to-compute “similarity functions” $k(\mathbf{x}, \mathbf{z})$ are, in fact, the dot product between certain feature expansions $\varphi(\mathbf{x})$ and $\varphi(\mathbf{z})$.

Such similarity functions are called \textbf{(positive definite) kernels}.
Many other feature expansions (besides polynomial expansion) have a similar computational trick to compute dot products.

Conversely, many easy-to-compute “similarity functions” $k(\vec{x}, \vec{z})$ are, in fact, the dot product between certain feature expansions $\vec{\varphi}(\vec{x})$ and $\vec{\varphi}(\vec{z})$.

Such similarity functions are called **(positive definite) kernels**

E.g., **Gaussian kernel**

$$k(\vec{x}, \vec{z}) = \exp \left(-\frac{||\vec{x} - \vec{z}||_2^2}{2\sigma^2} \right)$$

where $\sigma > 0$ is the “bandwidth” of the kernel (a hyperparameter).
Kernels

Many other feature expansions (besides polynomial expansion) have a similar computational trick to compute dot products.

Conversely, many easy-to-compute “similarity functions” \(k(\vec{x}, \vec{z}) \) are, in fact, the dot product between certain feature expansions \(\vec{\phi}(\vec{x}) \) and \(\vec{\phi}(\vec{z}) \).

Such similarity functions are called **(positive definite) kernels**

E.g., **Gaussian kernel**

\[
k(\vec{x}, \vec{z}) = \exp \left(-\frac{\|\vec{x} - \vec{z}\|_2^2}{2\sigma^2} \right)
\]

where \(\sigma > 0 \) is the “bandwidth” of the kernel (a hyperparameter).

Technically, the feature expansion \(\vec{\phi}: \mathbb{R}^d \to \mathbb{R}^D \) may need \(D = \infty \).
Many other feature expansions (besides polynomial expansion) have a similar computational trick to compute dot products.

Conversely, many easy-to-compute “similarity functions” $k(\vec{x}, \vec{z})$ are, in fact, the dot product between certain feature expansions $\vec{\varphi}(\vec{x})$ and $\vec{\varphi}(\vec{z})$.

- Such similarity functions are called **positive definite** kernels.
- E.g., **Gaussian kernel**

$$
k(\vec{x}, \vec{z}) = \exp \left(-\frac{||\vec{x} - \vec{z}||^2_2}{2\sigma^2} \right)$$

where $\sigma > 0$ is the “bandwidth” of the kernel (a hyperparameter).

Technically, the feature expansion $\vec{\varphi}: \mathbb{R}^d \to \mathbb{R}^D$ may need $D = \infty$.

Not a problem when using **kernel methods** (i.e., versions of ridge regression, Perceptron, etc. that only compute $\vec{\alpha} = (\alpha_1, \ldots, \alpha_n)$)
Many other feature expansions (besides polynomial expansion) have a similar computational trick to compute dot products.

Conversely, many easy-to-compute “similarity functions” $k(\vec{x}, \vec{z})$ are, in fact, the dot product between certain feature expansions $\vec{\varphi}(\vec{x})$ and $\vec{\varphi}(\vec{z})$.

Such similarity functions are called \textbf{(positive definite) kernels}.

E.g., \textbf{Gaussian kernel}

$$k(\vec{x}, \vec{z}) = \exp \left(-\frac{\|\vec{x} - \vec{z}\|_2^2}{2\sigma^2} \right)$$

where $\sigma > 0$ is the “bandwidth” of the kernel (a hyperparameter).

Technically, the feature expansion $\vec{\varphi}: \mathbb{R}^d \to \mathbb{R}^D$ may need $D = \infty$.

Not a problem when using \textbf{kernel methods} (i.e., versions of ridge regression, Perceptron, etc. that only compute $\vec{\alpha} = (\alpha_1, \ldots, \alpha_n)$).

Resulting predictors with implicit representation

$$g(\vec{x}) = \sum_{i=1}^{n} \alpha_i k(\vec{x}, \vec{x}_i)$$

are called \textbf{kernel machines}.
Neural networks
What else is there besides polynomials?

Weierstrass approximation theorem:
- Can approximate any continuous function using polynomials provided degree is high enough.
What else is there besides polynomials?

Weierstrass approximation theorem:
▶ Can approximate any continuous function using polynomials provided degree is high enough

Stone-Weierstrass approximation theorem: (via Hornik, Stinchcombe, & White, 1989)
▶ Can approximate any continuous function using functions of form

\[g(\vec{x}) = \sum_{i=1}^{D} \alpha_i \exp(\vec{x} \cdot \vec{w}_i) \]

provided \(D \) is large enough
What else is there besides polynomials?

Weierstrass approximation theorem:
- Can approximate any continuous function using polynomials provided degree is high enough

Stone-Weierstrass approximation theorem: (via Hornik, Stinchcombe, & White, 1989)
- Can approximate any continuous function using functions of form

\[g(\vec{x}) = \sum_{i=1}^{D} \alpha_i \exp(\vec{x} \cdot \vec{w}_i) \]

provided \(D \) is large enough
- Both the \(\alpha_i \)'s and \(\vec{w}_i \)'s may need to depend on the target function
What else is there besides polynomials?

Weierstrass approximation theorem:
- Can approximate any continuous function using polynomials provided degree is high enough

Stone-Weierstrass approximation theorem: (via Hornik, Stinchcombe, & White, 1989)
- Can approximate any continuous function using functions of form

\[
g(\vec{x}) = \sum_{i=1}^{D} \alpha_i \exp(\vec{x} \cdot \vec{w}_i)
\]

provided \(D\) is large enough
- Both the \(\alpha_i\)'s and \(\vec{w}_i\)'s may need to depend on the target function
- Can replace \(\exp\) with other “activation functions” and approximation property still holds
What else is there besides polynomials?

Weierstrass approximation theorem:
- Can approximate any continuous function using polynomials provided degree is high enough

Stone-Weierstrass approximation theorem: (via Hornik, Stinchcombe, & White, 1989)
- Can approximate any continuous function using functions of form

\[
g(\vec{x}) = \sum_{i=1}^{D} \alpha_i \exp(\vec{x} \cdot \vec{w}_i)
\]

provided \(D \) is large enough
- Both the \(\alpha_i \)'s and \(\vec{w}_i \)'s may need to depend on the target function
- Can replace \(\exp \) with other “activation functions” and approximation property still holds

Another interpretation: Can approximate any continuous function by linear function with feature expansion \(\tilde{\varphi}: \mathbb{R}^d \rightarrow \mathbb{R}^D \)

\[
\tilde{\varphi}(\vec{x}) = (\exp(\vec{x} \cdot \vec{w}_1), \ldots, \exp(\vec{x} \cdot \vec{w}_D))
\]

provided \(D \) is large enough and \(\tilde{\varphi} \)'s “parameters” \(\vec{w}_1, \ldots, \vec{w}_D \) may depend on target function
What else is there besides polynomials?

Weierstrass approximation theorem:
- Can approximate any continuous function using polynomials provided degree is high enough

Stone-Weierstrass approximation theorem: (via Hornik, Stinchcombe, & White, 1989)
- Can approximate any continuous function using functions of form

\[
g(\vec{x}) = \sum_{i=1}^{D} \alpha_i \exp(\vec{x} \cdot \vec{w}_i)
\]

provided \(D \) is large enough

- Both the \(\alpha_i \)'s and \(\vec{w}_i \)'s may need to depend on the target function
- Can replace \(\exp \) with other “activation functions” and approximation property still holds

Another interpretation: Can approximate any continuous function by linear function with feature expansion \(\vec{\varphi}: \mathbb{R}^d \rightarrow \mathbb{R}^D \)

\[
\vec{\varphi}(\vec{x}) = (\exp(\vec{x} \cdot \vec{w}_1), \ldots, \exp(\vec{x} \cdot \vec{w}_D))
\]

provided \(D \) is large enough and \(\vec{\varphi} \)'s “parameters” \(\vec{w}_1, \ldots, \vec{w}_D \) may depend on target function

- Called a **neural network**
Kernel machines vs. neural networks

Kernel machine (with kernel k)

$$g(\vec{x}) = \sum_{i=1}^{n} \alpha_i \ k(\vec{x}, \vec{x}_i)$$

Only α_i's are learned

Neural network (with exp activation)

$$g(\vec{x}) = \sum_{i=1}^{D} \alpha_i \ exp(\vec{x} \cdot \vec{w}_i)$$

Both α_i's and \vec{w}_i's are learned
Can use $D > n$
Anatomy of a neural network

▶ Top layer: output of function
Output is affine combination of hidden units
\[g(\vec{x}) = \sum_{i=1}^{D} \alpha_i h_i(\vec{x}) + \alpha_0 \] (Sometimes also apply an activation function to output)

▶ Middle layer: hidden units (a.k.a. neurons)
Each hidden unit computes composition of activation function with affine function of input
\[h_i(\vec{x}) = \sigma_i(\vec{x} \cdot \vec{w}_i + b_i) \]

▶ Bottom layer: input
\[\vec{x} = (x_1, \ldots, x_d) \]

Arrows in diagram depict functional dependence

Parameters: \(\vec{w}_i \)'s, \(b_i \)'s, and \(\alpha_i \)'s
Anatomy of a neural network

- **Bottom layer:** input $\vec{x} = (x_1, \ldots, x_d)$ to function
Anatomy of a neural network

- **Middle layer:** hidden units (a.k.a. neurons)
 Each hidden unit computes composition of activation function σ_i with affine function of input
 \[h_i(\vec{x}) = \sigma_i(\vec{x} \cdot \vec{w}_i + b_i) \]

- **Bottom layer:** input $\vec{x} = (x_1, \ldots, x_d)$ to function
Anatomy of a neural network

- **Top layer**: output of function

 Output is affine combination of hidden units

 \[g(\vec{x}) = \sum_{i=1}^{D} \alpha_i h_i(\vec{x}) + \alpha_0 \]

 (Sometimes also apply an activation function to output)

- **Middle layer**: hidden units (a.k.a. neurons)

 Each hidden unit computes composition of activation function \(\sigma_i \) with affine function of input

 \[h_i(\vec{x}) = \sigma_i(\vec{x} \cdot \vec{w}_i + b_i) \]

- **Bottom layer**: input \(\vec{x} = (x_1, \ldots, x_d) \) to function
Anatomy of a neural network

- **Top layer**: output of function
 Output is affine combination of hidden units

 \[g(\vec{x}) = \sum_{i=1}^{D} \alpha_i h_i(\vec{x}) + \alpha_0 \]

 (Sometimes also apply an activation function to output)

- **Middle layer**: hidden units (a.k.a. neurons)
 Each hidden unit computes composition of activation function \(\sigma_i \) with affine function of input

 \[h_i(\vec{x}) = \sigma_i(\vec{x} \cdot \vec{w}_i + b_i) \]

- **Bottom layer**: input \(\vec{x} = (x_1, \ldots, x_d) \) to function

- Arrows in diagram depict functional dependence
Anatomy of a neural network

- **Top layer**: output of function

 Output is affine combination of hidden units

 \[g(\vec{x}) = \sum_{i=1}^{D} \alpha_i h_i(\vec{x}) + \alpha_0 \]

 (Sometimes also apply an activation function to output)

- **Middle layer**: hidden units (a.k.a. neurons)

 Each hidden unit computes composition of activation function \(\sigma_i \) with affine function of input

 \[h_i(\vec{x}) = \sigma_i (\vec{x} \cdot \vec{w}_i + b_i) \]

- **Bottom layer**: input \(\vec{x} = (x_1, \ldots, x_d) \) to function

- Arrows in diagram depict functional dependence

- **Parameters**: \(\vec{w}_i \)'s, \(b_i \)'s, and \(\alpha_i \)'s
Neural network as a straight-line program

(Generalized) straight-line program that implements the neural network function:

\[
\begin{align*}
 u_1 &:= \vec{x} \cdot \vec{w}_1 + b_1 \\
 v_1 &:= \sigma_1(u_1) \\
 u_2 &:= \vec{x} \cdot \vec{w}_2 + b_2 \\
 v_2 &:= \sigma_2(u_2) \\
 &\vdots \\
 u_D &:= \vec{x} \cdot \vec{w}_D + b_D \\
 v_D &:= \sigma_D(u_D) \\
 \text{out} &:= \alpha_1 \times v_1 + \cdots + \alpha_D \times v_D + \alpha_0
\end{align*}
\]

(This is useful for the "forward pass" in autodiff!)
(Generalized) straight-line program that implements the neural network function:

\[u_1 := \vec{x} \cdot \vec{w}_1 + b_1 \]
\[v_1 := \sigma_1(u_1) \]
\[u_2 := \vec{x} \cdot \vec{w}_2 + b_2 \]
\[v_2 := \sigma_2(u_2) \]
\[\vdots \]
\[u_D := \vec{x} \cdot \vec{w}_D + b_D \]
\[v_D := \sigma_D(u_D) \]
\[\text{out} := \alpha_1 \times v_1 + \cdots + \alpha_D \times v_D + \alpha_0 \]

(This is useful for the “forward pass” in autodiff!)
Neural network as a straight-line program, again

(Generalized) straight-line program that implements the neural network function:

\[\vec{u} := W \vec{x} + \vec{b} \]
\[\vec{v} := \sigma(\vec{u}) \]
\[\text{out} := \vec{\alpha} \cdot \vec{v} + \alpha_0 \]

Parameters: \(W = [\vec{w}_1 | \cdots | \vec{w}_D]^T \in \mathbb{R}^{D \times d}, \vec{b} = (b_1, \ldots, b_D) \in \mathbb{R}^D, \vec{\alpha} = (\alpha_1, \ldots, \alpha_D) \in \mathbb{R}^D, \alpha_0 \in \mathbb{R} \)

In code above, vector-valued activation function \(\sigma: \mathbb{R}^D \to \mathbb{R}^D \) applies \(\sigma_i \) to \(i \)-th coordinate of input
Neural network as a straight-line program, again

(Generalized) straight-line program that implements the neural network function:

\[
\vec{u} := W\vec{x} + \vec{b} \\
\vec{v} := \sigma(\vec{u}) \\
\text{out} := \vec{\alpha} \cdot \vec{v} + \alpha_0
\]

Parameters: \(W = [\vec{w}_1|\ldots|\vec{w}_D]^T \in \mathbb{R}^{D \times d}, \vec{b} = (b_1, \ldots, b_D) \in \mathbb{R}^D, \vec{\alpha} = (\alpha_1, \ldots, \alpha_D) \in \mathbb{R}^D, \alpha_0 \in \mathbb{R} \)

In code above, vector-valued activation function \(\sigma : \mathbb{R}^D \to \mathbb{R}^D \) applies \(\sigma_i \) to \(i \)-th coordinate of input

Some other common activation functions:

- Heaviside (a.k.a. step function): \(\sigma_i(z) = 1 \{ z > 0 \} \) (popular in 1940s)
- Sigmoid (a.k.a. logistic): \(\sigma_i(z) = \frac{1}{1 + e^{-z}} \) (popular since 1970s)
- Rectified Linear Unit (ReLU): \(\sigma_i(z) = \max\{0, z\} \) (popular since 2012)
- "Softmax": \(\sigma(\vec{z}) = (e^{z_1}, \ldots, e^{z_D}) / \sum_{i=1}^D e^{z_i} \) (\(\mathbb{R}^D \to \mathbb{R}^D \); terrible naming choice)
- Max pooling: \(\sigma(\vec{z}) = \max\{z_1, \ldots, z_D\} \) (\(\mathbb{R}^D \to \mathbb{R}^1 \); popular in computer vision)
- Identity: \(\sigma_i(z) = z \) (you might be surprised . . .)
Neural network as a straight-line program, again

(Generalized) straight-line program that implements the neural network function:

\[
\begin{align*}
\vec{u} & := W \vec{x} + \vec{b} \\
\vec{v} & := \sigma(\vec{u}) \\
\text{out} & := \vec{\alpha} \cdot \vec{v} + \alpha_0
\end{align*}
\]

Parameters: \(W = [\vec{w}_1 | \cdots | \vec{w}_D]^T \in \mathbb{R}^{D \times d}, \vec{b} = (b_1, \ldots, b_D) \in \mathbb{R}^D, \vec{\alpha} = (\alpha_1, \ldots, \alpha_D) \in \mathbb{R}^D, \alpha_0 \in \mathbb{R} \)

In code above, vector-valued activation function \(\sigma : \mathbb{R}^D \to \mathbb{R}^D \) applies \(\sigma_i \) to \(i \)-th coordinate of input

Some other common activation functions:

- Heaviside (a.k.a. step function): \(\sigma_i(z) = \mathbb{1}\{z > 0\} \) (popular in 1940s)

- Sigmoid (a.k.a. logistic): \(\sigma_i(z) = \frac{1}{1 + e^{-z}} \) (popular since 1970s)

- Rectified Linear Unit (ReLU): \(\sigma_i(z) = \max\{0, z\} \) (popular since 2012)

- "Softmax": \(\sigma(\vec{z}) = (e^{z_1}, \ldots, e^{z_D}) / \sum_{i=1}^{D} e^{z_i} \) (popular in 1998)

- Max pooling: \(\sigma(\vec{z}) = \max\{z_1, \ldots, z_D\} \) (popular in computer vision)

- Identity: \(\sigma_i(z) = z \) (you might be surprised . . .)
Neural network as a straight-line program, again

(Generalized) straight-line program that implements the neural network function:

\[\vec{u} := W\vec{x} + \vec{b} \]
\[\vec{v} := \sigma(\vec{u}) \]
\[\text{out} := \vec{\alpha} \cdot \vec{v} + \alpha_0 \]

Parameters: \(W = [\vec{w}_1 | \cdots | \vec{w}_D]^T \in \mathbb{R}^{D \times d}, \vec{b} = (b_1, \ldots, b_D) \in \mathbb{R}^D, \vec{\alpha} = (\alpha_1, \ldots, \alpha_D) \in \mathbb{R}^D, \alpha_0 \in \mathbb{R} \)

In code above, vector-valued activation function \(\sigma : \mathbb{R}^D \rightarrow \mathbb{R}^D \) applies \(\sigma_i \) to \(i \)-th coordinate of input

Some other common activation functions:

- **Heaviside (a.k.a. step function):** \(\sigma_i(z) = 1 \{ z > 0 \} \) (popular in 1940s)
- **Sigmoid (a.k.a. logistic):** \(\sigma_i(z) = 1/(1 + e^{-z}) \) (popular since 1970s)
Neural network as a straight-line program, again

(Generalized) straight-line program that implements the neural network function:

\[
\begin{align*}
\vec{u} &:= W \vec{x} + \vec{b} \\
\vec{v} &:= \sigma(\vec{u}) \\
\text{out} &:= \vec{\alpha} \cdot \vec{v} + \alpha_0
\end{align*}
\]

Parameters: \(W = [\vec{w}_1 | \cdots | \vec{w}_D]^T \in \mathbb{R}^{D \times d}, \vec{b} = (b_1, \ldots, b_D) \in \mathbb{R}^D, \vec{\alpha} = (\alpha_1, \ldots, \alpha_D) \in \mathbb{R}^D, \alpha_0 \in \mathbb{R} \)

In code above, vector-valued activation function \(\sigma: \mathbb{R}^D \to \mathbb{R}^D \) applies \(\sigma_i \) to \(i \)-th coordinate of input

Some other common activation functions:

- **Heaviside (a.k.a. step function):** \(\sigma_i(z) = 1 \{ z > 0 \} \) (popular in 1940s)
- **Sigmoid (a.k.a. logistic):** \(\sigma_i(z) = 1/(1 + e^{-z}) \) (popular since 1970s)
- **Rectified Linear Unit (ReLU):** \(\sigma_i(z) = \max\{0, z\} \) (popular since 2012)
Neural network as a straight-line program, again

(Generalized) straight-line program that implements the neural network function:

\[
\begin{align*}
\vec{u} &:= W\vec{x} + \vec{b} \\
\vec{v} &:= \sigma(\vec{u}) \\
\text{out} &:= \vec{\alpha} \cdot \vec{v} + \alpha_0
\end{align*}
\]

Parameters: \(W = [\vec{w}_1 | \cdots | \vec{w}_D]^T \in \mathbb{R}^{D \times d}, \vec{b} = (b_1, \ldots, b_D) \in \mathbb{R}^D, \vec{\alpha} = (\alpha_1, \ldots, \alpha_D) \in \mathbb{R}^D, \alpha_0 \in \mathbb{R} \)

In code above, vector-valued activation function \(\sigma : \mathbb{R}^D \to \mathbb{R}^D \) applies \(\sigma_i \) to \(i \)-th coordinate of input.

Some other common activation functions:

- **Heaviside** (a.k.a. step function): \(\sigma_i(z) = 1 \{ z > 0 \} \) (popular in 1940s)
- **Sigmoid** (a.k.a. logistic): \(\sigma_i(z) = 1/(1 + e^{-z}) \) (popular since 1970s)
- **Rectified Linear Unit (ReLU)**: \(\sigma_i(z) = \max\{0, z\} \) (popular since 2012)
- **“Softmax”**: \(\sigma(\vec{z}) = (e^{z_1}, \ldots, e^{z_D})/\sum_{i=1}^{D} e^{z_i} \) (\(\mathbb{R}^D \to \mathbb{R}^D \); terrible naming choice)
Neural network as a straight-line program, again

(Generalized) straight-line program that implements the neural network function:

\[\vec{u} := W \vec{x} + \vec{b} \]
\[\vec{v} := \sigma(\vec{u}) \]
\[\text{out} := \vec{\alpha} \cdot \vec{v} + \alpha_0 \]

Parameters: \(W = [\vec{w}_1 | \cdots | \vec{w}_D]^T \in \mathbb{R}^{D \times d}, \vec{b} = (b_1, \ldots, b_D) \in \mathbb{R}^D, \vec{\alpha} = (\alpha_1, \ldots, \alpha_D) \in \mathbb{R}^D, \alpha_0 \in \mathbb{R} \)

In code above, vector-valued activation function \(\sigma: \mathbb{R}^D \rightarrow \mathbb{R}^D \) applies \(\sigma_i \) to \(i \)-th coordinate of input

Some other common activation functions:

- Heaviside (a.k.a. step function): \(\sigma_i(z) = 1 \{ z > 0 \} \)
 (popular in 1940s)
- Sigmoid (a.k.a. logistic): \(\sigma_i(z) = 1 / (1 + e^{-z}) \)
 (popular since 1970s)
- Rectified Linear Unit (ReLU): \(\sigma_i(z) = \max\{0, z\} \)
 (popular since 2012)
- "Softmax": \(\sigma(\vec{z}) = (e^{z_1}, \ldots, e^{z_D}) / \sum_{i=1}^{D} e^{z_i} \)
 (\(\mathbb{R}^D \rightarrow \mathbb{R}^D \); terrible naming choice)
- Max pooling: \(\sigma(\vec{z}) = \max\{z_1, \ldots, z_D\} \)
 (\(\mathbb{R}^D \rightarrow \mathbb{R}^1 \); popular in computer vision)
Neural network as a straight-line program, again

(Generalized) straight-line program that implements the neural network function:

\[\vec{u} := W \vec{x} + \vec{b} \]
\[\vec{v} := \sigma(\vec{u}) \]
\[\text{out} := \vec{\alpha} \cdot \vec{v} + \alpha_0 \]

Parameters: \(W = [\vec{w}_1 | \cdots | \vec{w}_D]^T \in \mathbb{R}^{D \times d}, \ \vec{b} = (b_1, \ldots, b_D) \in \mathbb{R}^D, \ \vec{\alpha} = (\alpha_1, \ldots, \alpha_D) \in \mathbb{R}^D, \ \alpha_0 \in \mathbb{R} \)

In code above, vector-valued activation function \(\sigma : \mathbb{R}^D \to \mathbb{R}^D \) applies \(\sigma_i \) to \(i \)-th coordinate of input

Some other common activation functions:

- **Heaviside (a.k.a. step function):** \(\sigma_i(z) = 1 \{ z > 0 \} \) (popular in 1940s)
- **Sigmoid (a.k.a. logistic):** \(\sigma_i(z) = 1/(1 + e^{-z}) \) (popular since 1970s)
- **Rectified Linear Unit (ReLU):** \(\sigma_i(z) = \max\{0, z\} \) (popular since 2012)
- **“Softmax”:** \(\sigma(\vec{z}) = (e^{z_1}, \ldots, e^{z_D}) / \sum_{i=1}^{D} e^{z_i} \) (\(\mathbb{R}^D \to \mathbb{R}^D \); terrible naming choice)
- **Max pooling:** \(\sigma(\vec{z}) = \max\{z_1, \ldots, z_D\} \) (\(\mathbb{R}^D \to \mathbb{R}^1 \); popular in computer vision)
- **Identity:** \(\sigma_i(z) = z \) (you might be surprised . . .)
More neural networks

Modern lingo:

- Parameterized function = “neural network”
- Function template = “architecture”
More neural networks

Modern lingo:

- Parameterized function = “neural network”
- Function template = “architecture”
More neural networks

Modern lingo:

- Parameterized function = “neural network”
- Function template = “architecture”

Define architecture directly with code!
More neural networks

Modern lingo:

- Parameterized function = “neural network”
- Function template = “architecture”

Define architecture directly with code!
Second one just needs a few extra lines . . .
More neural networks

Modern lingo:
- Parameterized function = “neural network”
- Function template = “architecture”

Define architecture directly with code!
Second one just needs a few extra lines . . .

To approximate certain functions, may be more size-economical to use multiple layers of hidden units
Fitting neural networks to data

Generic strategy:

- **Goal:** For \((\tilde{X}, Y) \sim P\),

\[
\min_{f: \mathbb{R}^d \rightarrow \mathbb{R}} \mathbb{E}[\ell(Y, f(\tilde{X}))]
\]

where \(\ell(y, p)\) is loss function (e.g., square loss, zero-one loss, logarithmic loss)
Fitting neural networks to data

Generic strategy:

- **Goal:** For $(\vec{X}, Y) \sim P$,

\[
\min_{f: \mathbb{R}^d \to \mathbb{R}} \mathbb{E}[\ell(Y, f(\vec{X}))]
\]

where $\ell(y, p)$ is loss function (e.g., square loss, zero-one loss, logarithmic loss)

- Assume IID model for training data
Fitting neural networks to data

Generic strategy:
- **Goal:** For $(\vec{X}, Y) \sim P$,
 \[
 \min_{f: \mathbb{R}^d \rightarrow \mathbb{R}} \mathbb{E}[\ell(Y, f(\vec{X}))]
 \]
 where $\ell(y, p)$ is loss function (e.g., square loss, zero-one loss, logarithmic loss)
- **Assume IID model for training data**
- **Use empirical distribution P_n as plug-in estimate of P to get training objective J** (If original objective uses zero-one loss, replace with a *differentiable* surrogate loss)
Fitting neural networks to data

Generic strategy:

- Goal: For $(\tilde{X}, Y) \sim P$,

$$\min_{f: \mathbb{R}^d \rightarrow \mathbb{R}} \mathbb{E}[\ell(Y, f(\tilde{X}))]$$

where $\ell(y, p)$ is loss function (e.g., square loss, zero-one loss, logarithmic loss)

- Assume IID model for training data

- Use empirical distribution P_n as plug-in estimate of P to get training objective J
 (If original objective uses zero-one loss, replace with a differentiable surrogate loss)

- Change “min over all functions $f: \mathbb{R}^d \rightarrow \mathbb{R}$” to “min over neural network functions”
Fitting neural networks to data

Generic strategy:

- **Goal:** For \((\vec{X}, Y) \sim P,\)

 \[
 \min_{f: \mathbb{R}^d \rightarrow \mathbb{R}} \mathbb{E}[\ell(Y, f(\vec{X}))]
 \]

 where \(\ell(y, p)\) is loss function (e.g., square loss, zero-one loss, logarithmic loss)

- Assume IID model for training data

- Use empirical distribution \(P_n\) as plug-in estimate of \(P\) to get training objective \(J\)
 (If original objective uses zero-one loss, replace with a *differentiable* surrogate loss)

- Change “\(\min\) over all functions \(f: \mathbb{R}^d \rightarrow \mathbb{R}\)” to “\(\min\) over neural network functions”

- Possibly incorporate regularization into \(J\)
 (E.g., data augmentation)
Fitting neural networks to data

Generic strategy:

- Goal: For \((\tilde{X}, Y) \sim P,\)
 \[
 \min_{f: \mathbb{R}^d \to \mathbb{R}} \mathbb{E}[\ell(Y, f(\tilde{X}))]
 \]
 where \(\ell(y, p)\) is loss function (e.g., square loss, zero-one loss, logarithmic loss)

- Assume IID model for training data

- Use empirical distribution \(P_n\) as plug-in estimate of \(P\) to get training objective \(J\)
 (If original objective uses zero-one loss, replace with a *differentiable* surrogate loss)

- Change “\(\min\) over all functions \(f: \mathbb{R}^d \to \mathbb{R}\)” to “\(\min\) over neural network functions”

- Possibly incorporate regularization into \(J\)
 (E.g., data augmentation)

- Attempt to minimize \(J\) with respect to neural network parameters (e.g., via SGD)
 (Autodiff is very helpful here!)
Fitting neural networks to data

Generic strategy:

- Goal: For \((\vec{X}, Y) \sim P,\)

\[
\min_{f: \mathbb{R}^d \to \mathbb{R}} \mathbb{E}[\ell(Y, f(\vec{X}))]
\]

where \(\ell(y, p)\) is loss function (e.g., square loss, zero-one loss, logarithmic loss)

- Assume IID model for training data

- Use empirical distribution \(P_n\) as plug-in estimate of \(P\) to get training objective \(J\)
 (If original objective uses zero-one loss, replace with a differentiable surrogate loss)

- Change “\(\min\) over all functions \(f: \mathbb{R}^d \to \mathbb{R}\)” to “\(\min\) over neural network functions”

- Possibly incorporate regularization into \(J\)
 (E.g., data augmentation)

- Attempt to minimize \(J\) with respect to neural network parameters (e.g., via SGD)
 (Autodiff is very helpful here!)

Note: \(J\) is typically not convex function of neural network parameters
Practical issues: Optimization

- Objective is often not convex function of parameters, and often has saddle point at zero
Objective is often not convex function of parameters, and often has saddle point at zero

- Run SGD starting from randomly chosen parameter values

- Many heuristics available for initial parameter distribution
 - These heuristics often rely on inputs \mathbf{x} being standardized and/or uncorrelated (PCA can help!)

- No single step size for SGD will work well for all problems

- Many heuristics available for choosing “schedule” of step sizes

See “Efficient BackProp” paper (LeCun, Bottou, Orr, Müller, 1998)
Objective is often not convex function of parameters, and often has saddle point at zero

- Run SGD starting from randomly chosen parameter values
- Many heuristics available for initial parameter distribution
Practical issues: Optimization

- Objective is often not convex function of parameters, and often has saddle point at zero
- Run SGD starting from randomly chosen parameter values
- Many heuristics available for initial parameter distribution
- These heuristics often rely on inputs \vec{x} being standardized and/or uncorrelated (PCA can help!)

No single step size for SGD will work well for all problems
- Many heuristics available for choosing “schedule” of step sizes

See “Efficient BackProp” paper (LeCun, Bottou, Orr, Müller, 1998)
Practical issues: Optimization

- Objective is often not convex function of parameters, and often has saddle point at zero
- Run SGD starting from randomly chosen parameter values
- Many heuristics available for initial parameter distribution
 - These heuristics often rely on inputs \vec{x} being standardized and/or uncorrelated (PCA can help!)
- No single step size for SGD will work well for all problems
 - Many heuristics available for choosing “schedule” of step sizes

See "Efficient BackProp" paper (LeCun, Bottou, Orr, M"uller, 1998)
Objective is often not convex function of parameters, and often has saddle point at zero

Run SGD starting from randomly chosen parameter values
Many heuristics available for initial parameter distribution
These heuristics often rely on inputs \vec{x} being standardized and/or uncorrelated (PCA can help!)
No single step size for SGD will work well for all problems
Many heuristics available for choosing “schedule” of step sizes
See “Efficient BackProp” paper (LeCun, Bottou, Orr, Müller, 1998)
Practical issues: Architecture choice

- Easy to design and use new architectures (thanks to high-quality autodiff software)

What architecture should you use? (What is the “right” inductive bias for your problem?)

Entire research communities (e.g., natural language processing, computer vision, compbio) devote considerable effort to finding good architectures for their problems.

Some choices are driven by goal of making optimization easier.

E.g., differentiable activation functions, very wide layers of hidden units.

But no panacea.
Practical issues: Architecture choice

- Easy to design and use new architectures (thanks to high-quality autodiff software)

- What architecture should you use? (≡ What is the “right” inductive bias for your problem?)

 - Entire research communities (e.g., natural language processing, computer vision, compbio) devote considerable effort to finding good architectures for their problems
Practical issues: Architecture choice

- Easy to design and use new architectures (thanks to high-quality autodiff software)

- What architecture should you use? (≡ What is the “right” inductive bias for your problem?)
 - Entire research communities (e.g., natural language processing, computer vision, compbio) devote considerable effort to finding good architectures for their problems

- Some choices are driven by goal of making optimization easier
 - E.g., differentiable activation functions, very wide layers of hidden units

But no panacea
Kernel machines and neural networks are powerful approaches to go beyond linear predictors.

In practice, more flexibility with neural networks (for better and/or for worse)

Autodiff and autodiff software has made a big difference

No single solution works well for all problems