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1 Best fitting subspaces

1.1 Problem definition

A typical data science problem represents data points as tuples of numerical
attribute values. Suppose a data set is composed ofm data points, a1, . . . , am,
with each ai being an n-tuple of real numbers, so n denotes the number of
attributes per data point. In cases where n is very large, it is potentially
helpful to reduce the number of attributes to something much smaller. Of
course, this cannot be done indiscriminately; we would want the “reduced”
data points to faithfully represent the original data points in some manner.

If the data points are regarded as vectors in n-dimensional Euclidean space
Rn, a natural approach to “reduce” each data point is to project them to a
k-dimensional subspace W of Rn, for some k ≤ n (and ideally, k ≪ n). If Q =
(q1, . . . ,qk) is an ordered ONB forW , then for any n-vector v, the coordinate
representation for the orthogonal projection of v to W with respect to Q is
the k-vector (⟨q1,v⟩, . . . , ⟨qk,v⟩). Using this coordinate representation, we
can reconstruct the vector in W that is closest to v in Euclidean distance:

PWv = ⟨q1,v⟩q1 + · · ·+ ⟨qk,v⟩qk.

Above, PW denotes the orthoprojector for the subspace W . See Figure 1.
So, we may seek to find the k-dimensional subspace W such that the

Euclidean distances between the original data points and their orthogonal
projections to W are as small as possible. There are m such distances, and
one way of putting all of them together into a single quality measure is to
consider their sum of squares:

cost(W ; a1, . . . , am) = ∥a1 − PWa1∥2 + · · ·+ ∥am − PWam∥2.

The cost is non-negative, and is zero if and only if ai ∈ W for all i ∈
{1, . . . ,m}. We call the problem of finding a k-dimensional subspace of min-
imum cost the best fitting k-dimensional subspace problem (k-BFS).

1



Singular value decomposition COMS 3251 Fall 2022 (Daniel Hsu)

-6 -4 -2 0 2 4 6

-3

-2

-1

0

1

2

3

Figure 1: Data set of m = 50 data points, each represented as a vector in
n-dimensional Euclidean space for n = 2. The data points are shown as red
×’s, and each is approximated by its orthogonal projection to the best fitting
k-dimensional subspace for k = 1; the projections are shown as blue ◦’s.

1.2 Reformulation of the cost

Recall, that for any subspace W of Rn, the orthoprojector PW decomposes
any vector v ∈ Rn uniquely into a part in W and a part orthogonal to W :

v = PWv + (I − PW )v.

By the Pythagorean Theorem,

∥v∥2 = ∥PWv∥2 + ∥(I − PW )v∥2 = ∥PWv∥2 + ∥v − PWv∥2.

Therefore, for a given data set a1, . . . , am, the cost of W is

cost(W ; a1, . . . , am) = ∥a1 − PWa1∥2 + · · ·+ ∥am − PWam∥2

=
(
∥a1∥2 − ∥PWa1∥2

)
+ · · ·+

(
∥am∥2 − ∥PWam∥2

)
=
(
∥a1∥2 + · · ·+ ∥am∥2

)
−
(
∥PWa1∥2 + · · ·+ ∥PWam∥2

)
.

The first parenthesized term on the final right-hand side isn’t affected by W .
So minimizing the cost is the same as maximizing the gain defined by

gain(W ; a1, . . . , am) = ∥PWa1∥2 + · · ·+ ∥PWam∥2.

There is another useful way to understand the gain. Identify a k-dimensional
subspace with an ONB, say, q1, . . . ,qk, and adopt the shorthand

gain(q1, . . . ,qk; a1, . . . , am) = gain(span({q1, . . . ,qk}); a1, . . . , am).
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By Parseval’s identity, for any v ∈ Rn,

∥PWv∥2 = ⟨v,q1⟩2 + · · ·+ ⟨v,qk⟩2.

So, using a double summation,

gain(q1, . . . ,qk; a1, . . . , am) =
m∑
i=1

k∑
j=1

⟨ai,qj⟩2 =
k∑

j=1

m∑
i=1

⟨ai,qj⟩2

=
k∑

j=1

gain(qj; a1, . . . , am)

where gain(x; a1, . . . , am) =
∑m

i=1⟨ai,x⟩2. The decomposition of the gain into
the k terms will be useful in our analysis.1

1.3 Greedy algorithm and best fitting lines

We claim that the following algorithm solves k-BFS.

Algorithm 1 Greedy algorithm for best fitting k-dimensional subspace
Input: Data points a1, . . . , am ∈ Rn.
1: for j = 1, . . . , k do
2: Let Sj−1 = span({v1, . . . ,vj−1}).
3: Let vj maximize gain(x; a1, . . . , am) among all unit vectors x ∈ S⊥j−1.
4: end for
5: return v1, . . . ,vk.

In each iteration of Algorithm 1 (specifically, in Line 3), a sub-problem
resembling the k = 1 version of k-BFS must be solved. It is not exactly the
same as 1-BFS on account of the constraint x ∈ S⊥j−1.

Example. Consider the data set a1 = (3, 1, 2, 0), a2 = (−1,−3, 0,−2),
a3 = (0, 2, 1, 3), and a4 = (−2, 0,−3,−1). Suppose we seek a 2-dimenisional
subspace to approximately fit the data points.

1We may drop the dependence of cost( · ;a1, . . . ,am) and gain( · ;a1, . . . ,am) on the data set a1, . . . ,am
when it is clear from context, and simply write cost( · ) and gain( · ).
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• Iteration j = 1:

S0 = {0},
S⊥0 = R4,

v1 = (1/2, 1/2, 1/2, 1/2).

This achieves gain(v1) = 32 + (−3)2 + 32 + (−3)2 = 36.

• Iteration j = 2:

S1 = {(c, c, c, c) : c ∈ R},
S⊥1 = {(x1, x2, x3, x4) ∈ R4 : x1 + x2 + x3 + x4 = 0},
v2 = (1/2,−1/2, 1/2,−1/2).

This achieves gain(v2) = 22 + 22 + (−2)2 + (−2)2 = 16.

Note that ∥a1∥2+ ∥a2∥2+ ∥a3∥2+ ∥a4∥2 = 56. This means that the final cost
is 56− 36− 16 = 4.

If we have a subroutine for solving 1-BFS—the best fitting line problem
(BFL)—we can solve the required sub-problem by suitably modifying the
data set. The sub-problem is to maximize gain(x; a1, . . . , am) among all unit
vectors orthogonal to (the span of) the previous chosen unit vectors. If Pj−1
denotes the orthoprojector for Sj−1, then each ai can be written as

ai = Pj−1ai + (I − Pj−1)ai,

and hence if x ∈ S⊥j−1, then

⟨ai,x⟩ = ⟨Pj−1ai + (I − Pj−1)ai,x⟩ =
��������:0
⟨Pj−1ai,x⟩+ ⟨(I − Pj−1)ai,x⟩.

This means the gain of x ∈ S⊥j−1 satisfies

gain(x; a1, . . . , am) =
m∑
i=1

⟨ai,x⟩2 =
m∑
i=1

⟨(I − Pj−1)ai,x⟩2

= gain(x;b1, . . . ,bm),

where bi = (I − Pj−1)ai. The final expression is the gain of x on a modified
data set obtained by projecting each ai to the orthogonal complement of Sj−1.
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On the other hand, even if the unit vector x was not restricted to be in
Sj−1, the gain achieved on the modified data set b1, . . . ,bm is

gain(x;b1, . . . ,bm) =
m∑
i=1

⟨(I − Pj−1)ai,x⟩2

=
m∑
i=1

⟨(I − Pj−1)
2ai,x⟩2

=
m∑
i=1

⟨(I − Pj−1)ai, (I − Pj−1)x⟩2

= gain((I − Pj−1)x;b1, . . . ,bm).

Above, the second equality uses the idempotency property of the projector
I − Pj−1. So, it is not possible to achieve any higher gain value by allowing
the unit vector x to have a non-zero component in Sj−1, and hence, it suffices
to maximize the gain on the modified data set over all unit vectors x.

1.4 Optimality of the greedy algorithm

Let us not worry about the difficulty of solving the BFL problem for now (see
Appendix A), and instead let us forge ahead with analyzing Algorithm 1.

The following theorem is main performance guarantee for Algorithm 1.

Theorem 1. The execution of Algorithm 1 on a data set a1, . . . , am ∈ Rn

returns orthonormal vectors v1, . . . ,vk in Rn such that their span Sk satisfies

gain(Sk; a1, . . . , am) ≥ gain(W ; a1, . . . , am)

for all k-dimensional subspaces W of Rn. Moreover, the non-negative values

σj =
√
gain(vj; a1, . . . , am) for j ∈ {1, . . . , k}

satisfy
σ1 ≥ · · · ≥ σk.

Proof. We first prove the optimality property of Sk. The proof is by induction
on k. The claim is true for k = 1 by definition of v1 in Line 3.
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So, for some k ≥ 2, assume as the inductive hypothesis that

gain(Sk−1) ≥ gain(W ′)

for all (k − 1)-dimensional subspaces W ′ of Rn. Consider any k-dimensional
subspace W of Rn. We need to show that

gain(Sk) ≥ gain(W ).

If W ∩S⊥k−1 = {0}, then dim(W ) ≤ n−dim(S⊥k−1) = k−1, a contradiction
of the assumed dimensionality of W . Hence, we may assume there exists a
non-zero vector w ∈ W ∩ S⊥k−1; let q1 = w/∥w∥. By the ONB Completion
Theorem, there exist unit vectors q2, . . . ,qk ∈ W such that {q1, . . . ,qk} is
an ONB for W . Let W− = span({q2, . . . ,qk}), and observe that

gain(W ) = gain(q1) +
k∑

j=2

gain(qj) = gain(q1) + gain(W−).

Since q1 ∈ S⊥k−1, the choice of vk in Line 3 implies

gain(q1) ≤ gain(vk).

And since dim(W−) = k − 1, the inductive hypothesis implies

gain(W−) ≤ gain(Sk−1).

We conclude that

gain(W ) = gain(q1) + gain(W−)

≤ gain(vk) + gain(Sk−1)

= gain(vk) +
k−1∑
j=1

gain(vj) = gain(Sk).

So, by the principle of mathematical induction, the first part of the theorem
is proven.

For the second part, we assume for sake of contradiction that for some
pair of indices (i, j) with 1 ≤ i < j ≤ k, we have σi < σj. Take the pair
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(i, j) for which i is as small as possible. Since Si−1 ⊆ Sj−1, it follows that
S⊥j−1 ⊆ S⊥i−1, so vj ∈ S⊥j−1 ⊆ S⊥i−1. On the other hand, vi has the highest gain

among unit vectors in S⊥i−1, as per Line 3 in Algorithm 1. Therefore

gain(vi) ≥ gain(vj).

But this contradicts the inequality σi < σj. Hence we must conclude that no
such pair (i, j) exists. This proves the second part of the theorem.

1.5 Additional properties of Algorithm 1

In this section, we prove additional properties of the ONB returned by Algo-
rithm 1. In the following, we consider an arbitrary data set a1, . . . , am from
Rn, and define

r = dim(span({a1, . . . , am})).
We consider the execution of Algorithm 1 on this data set, with k = r.

Proposition 1. Consider the setting of Theorem 1 and Section 1.5. Then

1. Sr = span({a1, . . . , am});

2. cost(Sk) =
∑r

j=k+1 σ
2
j for any k ∈ {0, . . . , r}.

3. σj > 0 for all j ∈ {1, . . . , r}.

Proof. By Theorem 1,

cost(Sr) ≤ cost(span({a1, . . . , am})) = 0.

Hence it must be that cost(Sr) = 0, and Sr = span({a1, . . . , am}), proving
the first claim. Note that

σ2
j = gain(vj) = cost(Sj−1)− cost(Sj). (1)

For any k ∈ {0, . . . , r}, summing (1) over j ∈ {k + 1, . . . , r} gives
r∑

j=k+1

σ2
j = cost(Sk)− cost(Sr).
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Since cost(Sr) = 0, it follows that cost(Sk) =
∑r

j=k+1 σ
2
j . This proves the

second claim.
Suppose for sake of contradiction that σj = 0 for some j ∈ {1, . . . , r}. By

Theorem 1, we also have σ2
j′ = 0 for all j′ ≥ j. This implies cost(Sj−1) = 0 by

the second claim (using k = j− 1). This, in turn, implies that a1, . . . , am are
contained in the (j − 1)-dimensional subspace Sj−1, a contradiction. Hence
σj > 0, proving the third claim.

In light of Proposition 1, for each j ∈ {1, . . . , r}, we define the unit vector

uj =
1

σj

 ⟨a1,vj⟩
...

⟨am,vj⟩

 =
1

σj
Avj, (2)

where A is the m× n matrix whose ith row is aT

i . Note that σj = ∥Avj∥ for
each j ∈ {1, . . . , r}. Proposition 1 also shows that v1, . . . ,vr form an ONB
for the row space of A.

Proposition 2. Consider the setting of Theorem 1 and Section 1.5. Then

A =
r∑

j=1

σjujv
T

j .

Proof. By the Unique Linear Transformation Theorem, it suffices to show
that the left-hand side and right-hand side, as linear transformations from
Rn to Rm, agree on a basis for Rn.

We construct a basis as follows. We start with v1, . . . ,vr; these vectors
form an ONB for the row space of A by Proposition 1. Let vr+1, . . . ,vn be an
ONB for the nullspace of A. Since the row space and nullspace are orthogonal
complements of each other, it follows that v1, . . . ,vn form an ONB for Rn.

Consider i ∈ {1, . . . , r}. We have, by the definition of ui,

Avi = σiui.

Moreover, since v1, . . . ,vr are orthonormal, we have vT

ivj = 1 if i = j and 0
otherwise; so

r∑
j=1

σjujv
T

jvi = σiui
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Now consider i ∈ {r + 1, . . . , n}. Since vi is in the nullspace of A, we have
Avi = 0. And since vi is orthogonal to vj for all j ∈ {1, . . . , r}, we have∑r

j=1 σjujv
T

jvi = 0. So we conclude that A and
∑r

j=1 σjujv
T

j are the same
matrices.

There is one last property to establish, orthonormality of u1, . . . ,ur, as
the next proposition shows.

Proposition 3. Consider the setting of Theorem 1 and Section 1.5. Then
u1, . . . ,ur are orthonormal.

The proof of Proposition 3 (see Appendix B) shows that if an ONB
v1, . . . ,vr for CS(AT) doesn’t lead to orthogonal vectors u1, . . . ,ur via the
definition in (2), then it is possible to improve the gain.

Since orthonormal vectors must be linearly independent, it readily follows
from Proposition 2, Proposition 3, and the Basis Sufficiency Theorem that
u1, . . . ,ur form an ONB for the column space of A.

Caution. It is possible that the choice of vj in Line 3 of Algorithm 1 is not
unique, i.e., there could be multiple unit vectors in S⊥j−1 that achieve the same
gain. The analysis throughout Section 1 allows for any of the possibilities.

2 Singular value decomposition

2.1 Existence theorem

The analysis of Algorithm 1 in Sections 1.4 and 1.5 applies to any data set—
and hence any m × n matrix A. So, the results there imply the following
general theorem about arbitrary matrices.

Theorem 2 (Singular Value Decomposition Theorem). For any m×n matrix
A with r = rank(A), there exist

• positive real numbers σ1 ≥ · · · ≥ σr,

• an ONB u1, . . . ,ur for the column space of A, and

• an ONB v1, . . . ,vr for the row space of A,
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such that

A =
r∑

j=1

σjujv
T

j .

The decomposition of the matrix A shown in Theorem 2 is called a sin-
gular value decomposition (SVD) of A. The numbers σ1, . . . , σr are called
the singular values of A. The vectors uj and vj are, respectively, the left
singular vector and the right singular vector corresponding to the singular
value σj. This decomposition expresses A as a sum of r outer products of
vectors σ1u1v

T
1, . . . , σrurv

T
r , each of which is an m× n matrix of rank 1.

The sequence of singular values is uniquely determined by the matrix A,
but it is possible that there are multiple choices for corresponding singular
vectors. For example, if A is the n×n identity matrix, then σ1 = · · · = σn = 1,
but v1, . . . ,vn can be any ONB for Rn (provided uj = vj as well).

An SVD of AT is obtained from an SVD of A, except switching the roles
of left- and right-singular vectors.

2.2 Geometric interpretation: two-dimensional case

Using an SVD, we can interpret the behavior of A, as a linear transformation
TA : Rn → Rm given by TA(x) = Ax, when applied to the unit sphere (i.e., the
set of all unit vectors) in Rn. We first start with the case where m = n = 2
and rank(A) = 2. The unit sphere in R2 is simply the unit circle.

Adopt the notations from Theorem 2 for an SVD of A, and let U = (u1,u2)
and V = (v1,v2) be, respectively, the ONB’s corresponding to the left and
right singular vectors. Observe that

TA(vj) = σjuj for each j ∈ {1, 2}. (3)

A vector x ∈ R2 has coordinates [x]V = ([x]V,1, [x]V,2) with respect to V:

x = [x]V,1 v1 + [x]V,1 v2.

Let y = TA(x). By linearity of the transformation and (3),

y = TA(x) = TA([x]V,1 v1 + [x]V,1 v2)

= [x]V,1 TA(v1) + [x]V,1 TA(v2)

= [x]V,1 σ1u1 + [x]V,1 σ2u2.
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So the coordinates of y with respect to U are

[y]U =

[
[y]U,1
[y]U,2

]
=

[
[x]V,1 σ1
[x]V,2 σ2

]
=

[
σ1 0
0 σ2

] [
[x]V,1
[x]V,2

]
.

In other words, the matrix representation [TA]V→U of TA with respect to the
input space basis V and output space basis U is a diagonal matrix. Observe
that we have the relation

[x]V,j =
[y]U,j
σj

for each j ∈ {1, 2}.

If x is a unit vector, then [x]2V,1+ [x]2V,2 = ∥x∥2 = 1 by Parseval’s identity,
and therefore y = TA(x) must satisfy

[y]2U,1
σ2
1

+
[y]2U,2
σ2
2

= 1.

This is the equation for an ellipse with major axis u1 and minor axis u2. (It
is again a circle if σ1 = σ2, in which case there are no distinguished axes.)

2.3 Geometric interpretation: general case

We now consider the general case of what we set out to do in Section 2.2. We
may regard A as a linear transformation between the r-dimensional subspaces
CS(AT) and CS(A), again given by TA(x) = Ax. This is because any part of
an n-vector x in the nullspace of A is “nullified” (i.e., mapped to zero) by
TA, and all that matters is the part of x in CS(AT).

Let V = (v1, . . . ,vr) and U = (u1, . . . ,ur), respectively, be ordered ONB’s
for CS(AT) and CS(A), formed by left and right singular vectors of A. Then,
following the same line of reasoning as in Section 2.2, we find that [TA]V→U

is a diagonal matrix:

[TA]V→U =

σ1 . . .
σr

 .

11
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(The fact that the matrix representation is diagonal is what makes the bases
V and U “nice” to use when working with TA.

2) If x is a unit vector in
CS(AT), then y = TA(x) must satisfy

[y]2U,1
σ2
1

+ · · ·+
[y]2U,r
σ2
r

= 1,

which is the equation for an ellipsoid in CS(A) with axes specified by u1, . . . ,ur.
If r < m, then this ellipsoid is a “degenerate” ellipsoid in Rm.

2.4 Compact SVD

An SVD of a matrix A is sometimes expressed as a factorization of A into a
product of three matrices:

A = UΣV T,

where

U =

 ↑ ↑
u1 · · · ur

↓ ↓


︸ ︷︷ ︸

m× r matrix

, Σ =

σ1 . . .
σr


︸ ︷︷ ︸

r × r diagonal matrix

, V =

 ↑ ↑
v1 · · · vr

↓ ↓


︸ ︷︷ ︸

n× r matrix

.

This factorization is called a compact SVD of A.3 The equivalence of this
factorization of A and the additive decomposition of A from Theorem 2 can be
checked by using the “sum of outer products” view of matrix multiplication.
The diagonal matrix Σ is the matrix representation of TA from Section 2.3
with respect to the ONB’s given by the left and right singular vectors.

The matrices UT and V transform the matrix A into Σ via matrix mul-
tiplication on the left and right. To see this, observe that UTU = I because
the left singular vectors are orthonormal, and V TV = I because the right
singular vectors are orthonormal. Therefore

UTAV = UTUΣV TV = Σ.

2If A is an n× n (square) matrix, then one could hope to find a single ordered basis V for Rn such that
[TA]V→V is diagonal. This is not always possible, but it is in some important cases, as we’ll see later.

3Compare this to a “full SVD”, described in Appendix C.
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2.5 Truncated SVD

A rank-k truncated SVD of a matrix A obtained by retaining the part of
an SVD of A corresponding to k largest singular values. In the notation of
Theorem 2, it leads to a rank-k SVD approximation of A, defined by:

Â =
k∑

j=1

σjujv
T

j .

If k ≥ rank(A), then this rank-k approximation is exactly the same as A, i.e.,

Â = A. But if k < rank(A), it is only an approximation of A.

Note that Â is an m × n matrix. However, it is represented by just
(m+n+1)k numbers, which can be much smaller than mn when k is small.

Computing the matrix-vector multiplication Âx for a given n-vector x also
requires only (m+n+1)k scalar multiplications (as opposed to mn for Ax, in
general). The computational savings are significant when m and n are large.

The approximation quality, suitably defined, achieved by a rank-k trun-
cated SVD is optimal: there is no better rank-k matrix that achieves the same
approximation quality. This is the content of the following theorem, which is
closely related to the optimality of Algorithm 1 for k-BFS in Theorem 1.4

Theorem 3 (Eckart-Young Theorem). Let A be an m× n matrix A of rank

r, and fix any k ∈ {0, . . . , r}. Let Â be a rank-k SVD approximation of A.
Then, for any other m× n matrix B of rank k,

m∑
i=1

n∑
j=1

(Ai,j −Bi,j)
2 ≥

m∑
i=1

n∑
j=1

(Ai,j − Âi,j)
2 = σ2

k+1 + · · ·+ σ2
r ,

where σ1 ≥ · · · ≥ σr are the singular values of A.

Example. Consider the 4× 4 matrix

A =


3 1 2 0
−1 −3 0 −2
0 2 1 3
−2 0 −3 −1

 .

4This theorem has a complex history.

13
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The first two components of an SVD are

[u1,u2] =


1/2 1/2
−1/2 1/2
1/2 −1/2
−1/2 −1/2

 ,

[
σ1

σ2

]
=

[
6

4

]
, [v1,v2] =


1/2 1/2
1/2 −1/2
1/2 1/2
1/2 −1/2

 .

The resulting rank-2 approximation is

Â =


5/2 1/2 5/2 1/2
−1/2 −5/2 −1/2 −5/2
1/2 5/2 1/2 5/2
−5/2 −1/2 −5/2 −1/2

 .

Every entry in Â differs from the corresponding entry of A by ±1/2. The

sum of the squared differences is
∑4

i=1

∑4
j=1(Ai,j − Âi,j)

2 = 4.

2.6 Pseudoinverse

A compact SVD UΣV T of an m×n matrix A defines an “inverse”-like matrix
called the (Moore-Penrose) pseudoinverse of A:

A+ = V Σ−1UT.

Notice that CS(A+) = CS(AT), and CS((A+)T) = CS(A).5 The Moore-Penrose
pseudoinverse behaves almost like an inverse of A in the following sense:

AA+ = UΣV TV Σ−1UT = UUT,

A+A = V Σ−1UTUΣV T = V V T,

which are, respectively, the orthoprojectors for the column space and row
space of A. In general, these orthoprojectors need not be an identity matrix.
But:

• If rank(A) = m, then CS(A) = Rm, and AA+ = UUT = I.

• If rank(A) = n, then CS(AT) = Rn, and A+A = V V T = I.

5Sometimes we write A+T to mean (A+)T.
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3 Application to least squares approximation

One important use of the SVD, and in particular, the Moore-Penrose pseu-
doinverse, is for solving the least squares approximation problem. Recall
that, in that problem, one is given an n× p matrix A and an n-vector b, and
the goal is to find a p-vector x that minimizes ∥Ax− b∥2. We saw that any
solution to the system of linear equations called the normal equations,

(ATA)x = ATb,

yields a minimizer of ∥Ax−b∥2. But it is possible that the normal equations
do not have a unique solution; this is the case if rank(A) < p.

A particular solution is given by the Moore-Penrose pseudoinverse: A+b.
To verify that A+b is a solution to the normal equations, recall that solutions
to the normal equations are the same as solutions to Ax = b0, where b0 is
the orthogonal projection of b to CS(A). But AA+ is the orthoprojector for
CS(A), so A(A+b) = (AA+)b = b0.

But what is special about A+b?

• It is the unique solution in the row space of A. To see this, recall that
since b0 ∈ CS(A), there is a unique solution to Ax = b0 contained in
CS(AT). Since CS(A+) = CS(AT), and A+b is a solution to Ax = b0, it
follows that A+b is the only solution to the normal equations in CS(AT).

• It is the unique solution of smallest Euclidean norm. To see this, recall
that any solution x to Ax = b0 can be written as the sum of a particular
solution—say, A+b—and a vector z in the nullspace NS(A). If z ̸= 0,
then ∥z∥ > 0 by positive definiteness of the norm. Since CS(AT) and
NS(A) are orthogonal complements, the Pythagorean Theorem implies

∥x∥2 = ∥A+b∥2 + ∥z∥2,

which is strictly larger than ∥A+b∥2 since ∥z∥2 > 0.

15
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4 Positive semidefinite matrices

A very important class of matrices is the class of positive semidefinite ma-
trices.6 We say an n × n matrix A is positive semidefinite (PSD) if there is
another matrix B such that A = BTB. In fact, an SVD of A can be obtained
from an SVD of B.

Proposition 4. Suppose A = BTB, and B =
∑r

i=1 σiuiv
T

i is a singular value
decomposition of B. Then A =

∑r
i=1 σ

2
i viv

T

i is a singular value decomposition
of A.

Proof. Let B = UΣV T be the compact SVD of B, formed from the SVD
given in the hypothesis in the usual way. Then

A = BTB

= (V ΣUT)(UΣV T)

= V ΣΣV T (since UTU = I)

= V Σ2V T (since Σ is diagonal).

So A =
∑r

i=1 σ
2
i viv

T

i , which is a singular value decomposition of A where
σ2
1, . . . , σ

2
r are the singular values, and v1, . . . ,vr serve as both the correspond-

ing left singular vectors and the corresponding right singular vectors.

PSD matrices arise in many contexts. We have already seen them come
up in the normal equations for least squares. They are also important in mul-
tivariate statistics: covariance matrices are always of the form BTB (where
B is a “data matrix” whose rows have been “centered”).

There is an equivalent characterization of positive semidefiniteness: an
n × n matrix A is positive semidefinite if it is symmetric and ⟨x, Ax⟩ for
all n-vectors x. (This is, in fact, the more common definition of a positive
semidefinite matrix.)

Theorem 4. The following statements about an n×n matrix A are equivalent.

1. There is a matrix B such that A = BTB.
6Just like many terms in mathematics (e.g., “orthogonal”), the term “positive semidefinite” is applied in

many different contexts. We have previous defined a very closely related property, “positive definiteness”, for
inner products and norms; later, we will also define “positive definite matrices” as a special case of “positive
semidefinite matrices”.
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2. A is symmetric and ⟨x, Ax⟩ ≥ 0 for all n-vectors x.

Proof. First, suppose there is a matrix B such that A = BTB. We will show
that A is symmetric and ⟨x, Ax⟩ ≥ 0 for all n-vectors x. For any x,

⟨x, Ax⟩ = ⟨x, BTBx⟩ (plugging in A = BTB)

= ⟨Bx, Bx⟩ (using ⟨u,Mv⟩ = ⟨MTu,v⟩)
≥ 0 (by positive definiteness of inner product).

Now, let us instead suppose A is symmetric and ⟨x, Ax⟩ ≥ 0 for all n-
vectors x. We will show that there is a matrix B such that A = BTB.
Consider an SVD A =

∑r
i=1 σiuivi of A. Observe that if ui = vi for all

i ∈ {1, . . . , r}, then we would be able to construct the desired matrix B:

B =

←− √σ1vT
1 −→

...
←− √σrvT

r −→

 .

In terms of the corresponding compact SVD A = UΣV T of A, this matrix
B can be written as B =

√
ΣV T, where

√
Σ is the diagonal matrix whose

diagonal entries are the square roots of that of Σ. Indeed, if ui = vi for all
i ∈ {1, . . . , r}, then U = V , and

BTB = V
√
Σ
√
ΣV T = V ΣV T = A.

So, we just need to prove that ui = vi for all i ∈ {1, . . . , r}: this is the
content of Proposition 5.

Proposition 5. Suppose A is an n×n symmetric matrix such that ⟨x, Ax⟩ ≥
0 for all n-vectors x, and A =

∑r
i=1 σiuiv

T

i is an SVD of A. Then ui = vi

for all i ∈ {1, . . . , r}.

Proof. Observe that A2 = AA = ATA because A is symmetric. Therefore,
by Proposition 4, A2 =

∑r
i=1 σ

2
i viv

T

i is an SVD of A2. Now consider any
i ∈ {1, . . . , r}, and define x = Avi − σivi. From the SVD of A, we see that
Avi = σiui, so x = σi(ui−vi). Since σi ̸= 0, it follows that x = 0 if and only

17
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if ui = vi. Consider the following sequence of inequalities and equalities:

0 ≤ ⟨x, Ax⟩ (by hypothesis)

= ⟨x, A(Avi − σivi)⟩
= ⟨x, A2vi − σiAvi⟩ (linearity)

= ⟨x, σ2
i vi − σiAvi⟩ (using SVD of A2)

= −σi⟨x,−σivi + Avi⟩ (linearity)

= −σi⟨x,x⟩
≤ 0

where the last step follows by the positive definiteness of inner product. This
shows that σi⟨x,x⟩ = 0. Again, by positive definiteness of inner product, we
conclude that x = 0, and therefore ui = vi.

A special class of positive semidefinite matrices are the positive definite
matrices. An n× n matrix A is positive definite if A is positive semidefinite,
and ⟨x, Ax⟩ = 0 implies that x = 0.

Proposition 6. A square matrix is positive definite if and only if it is positive
semidefinite and invertible.

Proof. Suppose a square matrix A is not invertible. By the Invertibility
Theorem, the nullspace of A has a non-zero vector x. Then ⟨x, Ax⟩ = ⟨x,0⟩ =
0, and yet x ̸= 0. So A is not positive definite.

Now suppose the n × n matrix A is positive semidefinite and invertible.
Let A = UΣV T be a compact SVD of A. By the Invertibility Theorem,
the rank of A is n, and by Proposition 5, we have U = V . Therefore V is
orthogonal, and ⟨x, Ax⟩ = ⟨x, V ΣV Tx⟩ = ⟨

√
ΣV Tx,

√
ΣV Tx⟩, which is zero

only if
√
ΣV Tx = 0 by positive definiteness of inner product. (Here,

√
Σ is

the diagonal matrix whose diagonal entries are the square roots of that of
Σ.) But observe that both

√
Σ and V T are invertible, so their product is also

invertible. By the Invertibility Theorem,
√
ΣV Tx = 0 implies x = 0. Hence

A is positive definite.
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A Finding the best fitting line

The following algorithm approximately solves BFL problem.

Algorithm 2 Power method for best fitting line
Input: m× n matrix A; initial vector x0 ∈ CS(AT); number of iterations t.
1: for s = 1, . . . , t do
2: Let ys = Axs−1.
3: Let xs = ATys.
4: end for
5: return Unit vector z = xt/∥xt∥.

Theorem 5. Let A be an m×n matrix. Let σ1 be the largest singular value of
A, and let v1 be a left singular vector corresponding to σ1. Let x0 ∈ CS(AT)
be a non-zero vector with ⟨v1,x0⟩2 ≥ δ∥x0∥2 for some δ ∈ (0, 1]. For any
ε ∈ (0, 1), if the number of iterations t satisfies

t ≥ 1

2ε
ln

1

εδ
,

then the execution of Algorithm 2 on A and initial vector x0 for t iterations
returns a unit vector z satisfying

∥Az∥2 ≥ 1− ε

1 + ε
σ2
1.

Note that the guarantee for Algorithm 2 in Theorem 5 requires an initial
non-zero vector x0 ∈ CS(AT) that satisfies ⟨v1,x0⟩2 ≥ δ∥x0∥2 for some δ ∈
(0, 1]. To obtain a vector in CS(AT), it suffices to multiply AT by any m-
vector. Or, just choose a vector x′ ∈ Rn and regard x0 as the orthogonal
projection of x′ to CS(AT); the first iteration nullifies the part of x′ in NS(A).

However, not just any vector in CS(AT) is good enough. We want to use
Algorithm 2 with a non-zero x0 such that ⟨v1,x0⟩2/∥x0∥2 is not too small.
One way to do this is to choose a unit vector (in Rn) uniformly at random.
It is unlikely for ⟨v1,x0⟩2/∥x0∥2 to be much smaller than 1/n. If the unlikely
event does not happen, then the requirement on t is on the order of log n
(regarding ε as a constant).7

7If you’re not feeling lucky, just run Algorithm 2 a half dozen times or so with different (randomly chosen)
initial vectors, and take the best result. This dramatically decreases the chance of failure.
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Proof of Theorem 5. Notice that ∥Az∥2 = ∥Axt∥2/∥xt∥2 = ∥yt+1∥2/∥xt∥2.
So, to obtain a lower-bound on this quantity, we will obtain a lower-bound
on ∥yt+1∥2 and an upper-bound on ∥xt∥2.

Denote the singular values of A by σ1 ≥ · · · ≥ σr > 0, where r is the rank
of A. Let U = (u1, . . . ,ur) and V = (v1, . . . ,vr) be ordered ONB’s composed
of, respectively, left singular vectors and right singular vectors corresponding
to the singular values. Let ℓ denote the number of singular values σj satisfying
σ2
j ≥ (1− ε)σ2

1. The assumption on x0 (via Parseval’s identity) ensures

[x0]
2
V,1 ≥ δ∥x0∥2 = δ

r∑
j=1

[x0]
2
V,j ≥ δ

r∑
j=ℓ+1

[x0]
2
V,j,

where [v]V = ([v]V,1, . . . , [v]V,r). The assumption on t (via the inequality
1 + a ≤ ea for any real number a) ensures that

(1− ε)2t ≤ e−2εt ≤ εδ.

Using coordinates with respect to the ordered bases U and V, the updates
in iteration s of Algorithm 2 are

[ys]U = Σ[xs−1]V and [xs]V = Σ[ys]U = Σ2[xs−1]V,

where Σ is the r × r diagonal matrix of singular values σ1, . . . , σr. So, by a
simple induction, we have

[xt]V = Σ2t[x0]V and [yt+1]U = Σ2t+1[x0]V.

Using Parseval’s identity and the choice of ℓ, we obtain

∥yt+1∥2 = ∥[yt+1]U∥2 = ∥Σ2t+1[x0]V∥2

=
r∑

j=1

σ4t+2
j [x0]

2
V,j

≥
ℓ∑

j=1

σ4t+2
j [x0]

2
V,j

≥ (1− ε)σ2
1

ℓ∑
j=1

σ4t
j [x0]

2
V,j,
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and also, using the conditions on t and δ,

∥xt∥2 = ∥[xt]V∥2 = ∥Σ2t[x0]V∥2

=
r∑

j=1

σ4t
j [x0]

2
V,j

≤
ℓ∑

j=1

σ4t
j [x0]

2
V,j + (1− ε)2tσ4t

1

r∑
j=ℓ+1

[x0]
2
V,j

≤
ℓ∑

j=1

σ4t
j [x0]

2
V,j + εδσ4t

1

r∑
j=ℓ+1

[x0]
2
V,j (by condition on t)

≤
ℓ∑

j=1

σ4t
j [x0]

2
V,j + εσ4t

1 [x0]
2
V,1 (by condition on δ)

≤ (1 + ε)
ℓ∑

j=1

σ4t
j [x0]

2
V,j.

So, the ratio ∥yt+1∥2/∥xt∥2 satisfies

∥yt+1∥2

∥xt∥2
≥ 1− ε

1 + ε
σ2
1.

B Orthogonality of the left singular vectors

Proof of Proposition 3. Suppose for sake of contradiction that there is some
pair (i, j) with 1 ≤ i < j ≤ r such that ⟨ui,uj⟩ ≠ 0. Take the pair (i, j)
for which i is as small as possible. Define c = ⟨ui,uj⟩ and δ = σj/σi. By
assumption, c ̸= 0, and by Proposition 1, δ > 0. We define the unit vector

wi =
1

∥vi + δcvj∥
(vi + δcvj).

It suffices to prove that wi has higher gain than vi among unit vectors in
S⊥i−1, a contradiction, which then leads us to conclude that no such pair (i, j)
exists, i.e., that u1, . . . ,ur are orthonormal.
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The main quantity to study is uT

iAwi; we will obtain bounds on this
quantity from above and below. We start with the lower-bound. Observe
that by linearity and the definitions of {u1, . . . ,ur}, c, and δ,

uT

iAwi = uT

iA

(
1

∥vi + δcvj∥
(vi + δcvj)

)
= uT

i

(
1

∥vi + δcvj∥
(σiui + δcσjuj)

)
=

σi + δc2σj
∥vi + δcvj∥

=
1 + δ2c2

∥vi + δcvj∥
σi.

By the orthonormality of v1, . . . ,vr and the Pythagorean Theorem,

∥vi + δcvj∥ =
√
∥vi∥2 + ∥δcvj∥2 =

√
1 + δ2c2.

Therefore, using δ2c2 > 0,

uT

iAwi =
1 + δ2c2√
1 + δ2c2

σi =
√

1 + δ2c2 σi > σi =
√

gain(vi).

Now we obtain a upper-bound on uT

iAwi. Using the Cauchy-Schwarz
Inequality and the fact ∥ui∥ = 1, we have

uT

iAwi ≤ ∥ui∥∥Awi∥ = ∥Awi∥ =
√
gain(wi).

Combining the upper- and lower-bounds on uT

iAwi, we arrive at

gain(wi) > gain(vi).

But wi is a linear combination of vi and vj, both of which are in S⊥i−1 by
construction and the fact i < j; hence wi ∈ S⊥i−1 as well. So the inequality
above contradicts the fact that vi has the highest gain among unit vectors in
S⊥i−1 (as per Line 3 in Algorithm 1). This completes the proof.
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C Full SVD

A full SVD is a factorization of A into the product of three matrices, A =
UΣV T, but the matrices are defined somewhat differently compared to how
they are defined in a compact SVD. To obtain a full SVD of A:

• Again, start with singular values σ1 ≥ · · · ≥ σr > 0 of A, along with
corresponding left singular vectors u1, . . . ,ur and right singular vectors
v1, . . . ,vr.

• Extend the ONB u1, . . . ,ur to an ONB for Rm to get u1, . . . ,um. This
is achieved by augmenting u1, . . . ,ur with a basis for the left nullspace
of A.

• Similarly, we extend the ONB v1, . . . ,vr to an ONB for Rn, to get
v1, . . . ,vn.

• Then U = [u1, . . . ,um] is an m × m orthogonal matrix, and V =
[v1, . . . ,vn] is an n× n orthogonal matrix.

• To write A = UΣV T, the middle matrix Σ must be m× n, and this is
obtained just by extending the r× r diagonal matrix of singular values
to a m× n matrix, filling in with zeros as needed:8

Σ =


σ1

. . . zeros
σr

zeros zeros


︸ ︷︷ ︸

m× n matrix

.

There are min{m,n} “diagonal” entries in Σ; the first r of them are
σ1 ≥ · · · ≥ σr > 0, and the remaining min{m,n} − r of them are
σr+1 = · · · = σmin{m,n} = 0. The rank of A is simply the number of
non-zero σi’s.

8It is possible that some of these blocks of zeros are empty. For example, if r = m < n, then the bottom
two blocks of zeros would not appear.
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D Eckart-Young Theorem

Proof of Theorem 3. Let
∑r

i=1 σiuiv
T

i be an SVD of A, and suppose the
rank-k approximation of A is obtained be retaining the part of this de-
composition corresponding to the k largest singular values σ1, . . . , σk. Let
Sk = span({v1, . . . ,vk}) and let Pk =

∑k
i=1 viv

T

i be the orthoprojector for
Sk. Then observe that

APk =

(
r∑

i=1

σi uiv
T

i

)(
k∑

j=1

vjv
T

j

)
=

r∑
i=1

k∑
j=1

σi v
T

ivjuiv
T

j =
k∑

i=1

σi uiv
T

i ,

since the terms in the double summation are non-zero only if 1 ≤ i = j ≤ k.
This shows that Â = APk. Moreover,

m∑
i=1

n∑
j=1

(Ai,j − Âi,j)
2 =

m∑
i=1

∥ai − Pkai∥2 = cost(Sk; a1, . . . , am),

where aT

i is the ith row of A, and cost is as we defined in Section 1. By Propo-
sition 1, we have cost(Sk; a1, . . . , am) =

∑r
j=k+1 σ

2
j . Moreover, by Theorem 1,

we have
cost(Sk; a1, . . . , am) ≤ cost(CS(BT); a1, . . . , am),

since B has rank k.
Now we show that cost(CS(BT); a1, . . . , am) ≤

∑m
i=1

∑n
j=1(Ai,j − Bi,j)

2.
Let bT

1, . . . ,b
T
m be the rows of B, and let P be the orthoprojector for CS(BT).

Then, by the Pythagorean Theorem and the fact Pbi = bi,

∥ai − bi∥2 = ∥P (ai − bi)∥2 + ∥(I − P )(ai − bi)∥2

= ∥P (ai − bi)∥2 + ∥ai − Pai + bi − Pbi∥2

≥ ∥ai − Pai∥2.

Therefore,

cost(CS(BT); a1, . . . , am) =
m∑
i=1

∥ai − Pai∥2

≤
m∑
i=1

∥ai − bi∥2 =
m∑
i=1

m∑
j=1

(Ai,j −Bi,j)
2.
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