
Matrix notation and multiplication
COMS 3251 Fall 2022 (Daniel Hsu)

1 Matrices

Much of linear algebra is about developing useful “algebraic” notations for
expressing the central concepts of the subject. These notations will help
us see connections between those concepts. But it takes a bit of time and
practice to “get used to” the notations.

A matrix (which has the plural form matrices) is a list of vectors. We
visually represent a matrix using a table, listing the vectors one after another
from left to right. For example, suppose we have the vectors a1 = (1, 2, 3),
a2 = (2, 4, 6), a3 = (3, 4, 5), and a4 = (4, 4, 4). Then, the matrix A with these
vectors, in order, is

A =

 ↑ ↑ ↑ ↑
a1 a2 a3 a4
↓ ↓ ↓ ↓

 =

1 2 3 4
2 4 4 4
3 6 5 4

 . (1)

(The arrows here are printed just for visual effect; they don’t mean anything.)
The jth column of A is aj. The ith row of A lists ith components of all of
the vectors, in order. Note that a more literal depiction of the ordered list is12

3

 ,

24
6

 ,

34
5

 ,

44
4

 .

But that is aesthetically displeasing, and it is better to remove the clutter.
It will also turn out that the rows of matrices are interesting, even though
we have defined the matrices column-wise.1

The matrix A shown above has 3 rows and 4 columns. A matrix with m
rows and n columns is said to have shape (a.k.a. dimensions) m × n. It is
important to remember this ordering: # rows by # columns.

1We could have alternatively adopted a different convention to always write vectors as rows, and then
define a matrix to be a stack of vectors, listed from top to bottom. All of linear algebra would work exactly
the same way, with the obvious interchanges of rows and columns. See also, e.g., Section 6.
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We can add two matrices together (provided they have the same shape),
because this just corresponds to adding together the corresponding vectors
in the two lists of vectors: ↑ ↑

a1 · · · an
↓ ↓

+

 ↑ ↑
b1 · · · bn

↓ ↓

 =

 ↑ ↑
a1 + b1 · · · an + bn

↓ ↓

 .

And we can scale a matrix by a real number, because this just corresponds
to scaling each of the vectors in the list by the real number:

c

 ↑ ↑
a1 · · · an
↓ ↓

 =

 ↑ ↑
c a1 · · · c an
↓ ↓

 .

2 Matrix-vector multiplication

The (matrix-vector) multiplication (a.k.a. product) of an m× n matrix A by
an n-vector x, written Ax, is defined to yield the m-vector

x1a1 + · · ·+ xnan =
n∑

k=1

xkak,

where ak is the kth column of A, and x = (x1, . . . , xn). In other words, it is
just notation for writing a particular linear combination of the columns of A,
as specified by x. The column space of a m× n matrix A is CS(A) = {Ax :
x ∈ Rn}, the set of all vectors Ax as x ranges over all n-vectors.2 Notice that
this is the same as the span of the columns of A.

Example. If A is the matrix from (1), and x = (−2, 0, 2, 0), then

Ax =

1 2 3 4
2 4 4 4
3 6 5 4



−2
0
2
0

 = −2

12
3

+ 0

24
6

+ 2

34
5

+ 0

44
4

 =

44
4

 .

2Some texts refer to the column space of A by C(A), while others use R(A).
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And if y = (−2, 0, 2,−1), then

Ay = −2

12
3

+ 0

24
6

+ 2

34
5

+−1

44
4

 =

00
0

 = 0.

Note. You may have heard of another way to multiply a matrix by a vector,
which computes one component of the answer at a time. If we write Ai,j for
the (i, j)th component of the matrix A—i.e., the value in ith row and jth
column of A—then the ith component of Ax is

Ai,1x1 + · · ·+ Ai,nxn =
n∑

j=1

Ai,jxj,

where x = (x1, . . . , xn). So, again in our example with A from (1) and
x = (−2, 0, 2, 0), the first component of the answer is

1× (−2) + 2× 0 + 3× 2 + 4× 0 = 4,

and the third component of the answer is

3× (−2) + 6× 0 + 5× 2 + 4× 0 = 4.

This, of course, is an equivalent definition of Ax, and in some cases, it is
a more convenient way to think about Ax. (For instance, if you need to
compute Ax by hand, this is usually the way to go.)

Example. Does the following system of linear equations (in terms of the
variables x and y) have a solution?

x + 3y = 4

2x + 4y = 4

3x + 5y = 4

This is equivalent to asking if the vector (4, 4, 4) is in the column space of
the matrix 1 3

2 4
3 5

 .
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We may thus write the system of linear equations using matrix-vector multi-
plication: 1 3

2 4
3 5

[
x
y

]
=

44
4

 .

We have defined matrix-vector multiplication Ax in a way that treats the
vector x as the action being performed on the matrix A—it linearly combines
the columns of A:

A =

 ↑ ↑
a1 · · · an
↓ ↓

 x = (x1,...,xn)7−−−−−−−−→ x1a1 + · · ·+ xnan = Ax.

But matrix-vector multiplication Ax can also be viewed in a way where A
is the action being performed on the vector x—a transformation of x into
another vector:

x
A7−−−−→ Ax.

This transformation has a very special property: linearity.

3 Linearity

As asserted above, a very important property of matrix-vector multiplication
is linearity, which (as you may recall) is really two separate properties put
together.

Additivity: A(x+ y) = (Ax) + (Ay) for all vectors x and y.

Left-hand side: Add the x and y, then multiply A by the result.

Right-hand side: Multiply A by x and also by y, then add the results.

Homogeneity: A(cx) = c(Ax) for all vectors x and scalars c.

Left-hand side: Scale the vector x by c, then multiply A by the result.

Right-hand side: Multiply A by x, then scale the result by c.

(Above, A is an m× n matrix, x and y are n-vectors, and c is a scalar.)
Put together, for all vectors x and y and all scalars c, we have

A(cx+ y) = c(Ax) + (Ay). (2)
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Example. SupposeA is the matrix from (1), x = (0, 1, 0, 1), y = (2,−1, 1, 0),
and c = 2. Then cx+ y = (0, 2, 0, 2) + (2,−1, 1, 0) = (2, 1, 1, 2), so we have

A(cx+ y) =

1 2 3 4
2 4 4 4
3 6 5 4



2
1
1
2

 =

1520
25

 .

Moreover, Ax = (6, 8, 10) and Ay = (3, 4, 5), so

c(Ax) + (Ay) = 2

 6
8
10

+

34
5

 =

1520
25

 .

In general, if the columns of A are the m-vectors a1, . . . , an, and x =
(x1, . . . , xn) and y = (y1, . . . , yn), then (2) says

(cx1+y1)a1+ · · ·+(cxn+yn)an = c(x1a1+ · · ·+xnan)+(y1a1+ · · ·+ynan).

Suppose T : Rn → Rm is a linear transformation. We claim that there is
an m × n matrix AT such that T (x) = ATx for all n-vectors x. The matrix
AT is given by

AT =

 ↑ ↑
T (e1) · · · T (en)
↓ ↓

 ,

where ei is the n-vector whose jth component is 1 if and only if i = j. Note
that every n-vector x = (x1, . . . , xn) can be written as a linear combination
x1e1 + · · ·+ xnen of {e1, . . . , en}. So, by linearity of T , we have

T (x) = T (x1e1 + · · ·+ xnen)

= x1 T (e1) + · · ·+ xn T (en)

= ATx

for the matrix AT we have just defined.
The following theorem summarizes the facts of this section.

Theorem 1. For any linear transformation T : Rn → Rm, there is an m× n
matrix AT such that T (x) = ATx for all x ∈ Rn. Conversely, for any m× n
matrix A, the transformation TA : Rn → Rm given by TA(x) = Ax is linear.
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Theorem 1 is what makes matrix notation so powerful: it lets us describe
every linear transformation in a very “algebraic” fashion.

There is one more way in which linearity arises with matrix-vector mul-
tiplication. Specifically, if A = [a1, . . . , an] and B = [b1, . . . ,bn] are both
m× n matrices, and c is a scalar, then for any n-vector x = (x1, . . . , xn),

(cA+B)x = cAx+Bx.

Indeed, we can either first linearly combine corresponding columns of A and
B before multiplying by x, or we can first multiply each of A and B by x,
and then linearly combine the results:

(cA+B)x =

c

 ↑ ↑
a1 · · · an
↓ ↓

+

 ↑ ↑
b1 · · · bn

↓ ↓

x1...
xn


=

 ↑ ↑
c a1 + b1 · · · c an + bn

↓ ↓

x1...
xn


= x1 (c a1 + b1) + · · ·+ xn (c an + bn)

= c (x1a1 + · · ·+ xnan) + (x1b1 + · · ·+ xnbn)

= c

 ↑ ↑
a1 · · · an
↓ ↓

x1...
xn

+

 ↑ ↑
b1 · · · bn

↓ ↓

x1...
xn


= cAx+Bx.

4 Matrix multiplication

We now come to the main event: matrix-matrix multiplication, usually short-
ened to matrix multiplication.

Motivation. Suppose you have linear transformations G : Rn → Rm and
F : Rp → Rn. The composition of G and F is another transformation, written
G ◦ F (and read aloud as “G on F” or “G composed with F”), that applies
G to the result of applying F :

(G ◦ F )(x) = G(F (x)).
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The input space for the composition is Rp (which is the input space of F ),
and output space is Rm (which is the output space of G). Of course, it is
important that the input space of G is the same as the output space of F , or
else it would not be possible to apply G to the output of F . The composition
of linear transformations is also a linear transformation: for any p-vectors x
and y, and any scalar c,

G(F (cx+ y)) = G(c F (x) + F (y)) (by linearity of F )

= cG(F (x)) +G(F (y)) (by linearity of G).

Each of G, F , and the composition G ◦ F are linear transformations. So
Theorem 1 implies that for each of them, there is a matrix such that the
linear transformation is the same as multiplying the input by that matrix. If
A is the matrix for G, and B is the matrix for F , then what is the matrix for
G ◦ F? Answer: the matrix multiplication of A and B.3

The (matrix) multiplication (a.k.a. product) of an m× n matrix A by an
n × p matrix B, written AB, is defined to yield the m × p matrix Z whose
kth column is

zk = Abk,

where Z = [z1, . . . , zp] and B = [b1, . . . ,bp]. So each column of Z is a linear
combination of the columns of A; there are p such linear combinations, each
being specified by a column of B:

Z =

 ↑ ↑
z1 · · · zp
↓ ↓

 =

 ↑ ↑
Ab1 · · · Abp

↓ ↓

 .

This strictly generalizes matrix-vector multiplication, which is recovered in
the special case where p = 1 (where B has just one column).

Example. Let A be the matrix from (1), and let B be the matrix whose
columns are (0, 1, 0, 1) and (2,−1, 1, 0). Then

AB =

1 2 3 4
2 4 4 4
3 6 5 4



0 2
1 −1
0 1
1 0

 =

 6 3
8 4
10 5

 .

3The reason this is the answer should become clear after we establish the associativity property.
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Another example. Again, A is the matrix from (1), and B is the matrix
whose columns are (−2, 0, 2, 0) and (2,−1, 0, 1). Then

AB =

1 2 3 4
2 4 4 4
3 6 5 4



−2 2
0 −1
2 0
0 1

 =

4 4
4 4
4 4

 .

Caution. Matrix multiplication is unforgiving of “type errors”.

• Can we multiply a 3× 4 matrix by a 3× 4 matrix?

No, this doesn’t make sense: The first matrix is a list of 4 column
vectors, while each column of the second matrix is a 3-vector.

• What about multiplying a 1× 3 matrix by a 3× 1 matrix?

Yes, this is fine!

• What about multiplying a 3× 1 matrix by a 1× 3 matrix?

Also fine!

• Rule: Multiplying an m× n matrix by a p× q matrix requires n = p.

Finally, we now see the “standard” (but equivalent) definition of matrix
multiplication: If Ai,j is the (i, j)th component of A, and Bj,k is the (j, k)th
component of B, then the (i, k)th component of AB is

Ai,1B1,k + · · ·+ Ai,nBn,k =
n∑

j=1

Ai,jBj,k. (3)

5 Properties of matrix multiplication

5.1 Associativity

An essential property of matrix multiplication is associativity : For matrices
A, B, and C (such that AB and BC both make sense), we have

A(BC) = (AB)C. (4)
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The reason this holds is really the same as the linearity of matrix-vector
multiplication. For now, just consider the case where C has just a single
column, c, so (4) becomes

A(Bc) = (AB)c. (5)

Multiplying another matrix by c results in a linear combination of the columns
of that other matrix. In the left-hand side of (5), we first linearly combine the
columns of B before multiplying A by the result. In the right-hand side of
(5), we first multiply A by each column of B, and then linearly combine the
results. By the linearity of matrix-vector multiplication (in the step below
marked by ∗), these two approaches give the same result:

A(Bc) = A

 ↑ ↑
b1 · · · bp

↓ ↓

c1...
cp


= A(c1b1 + · · ·+ cpbp)
∗
= c1(Ab1) + · · ·+ cp(Abp)

=

 ↑ ↑
Ab1 · · · Abp

↓ ↓

c1...
cp


=

A

 ↑ ↑
b1 · · · bp

↓ ↓

c1...
cp

 = (AB)c.

Example.

A(Bc) =

1 2 3 4
2 4 4 4
3 6 5 4




0 2
1 −1
0 1
1 0

[
2
1

] =

1 2 3 4
2 4 4 4
3 6 5 4



2
1
1
2

 =

1520
25

 ,

and

(AB)c =


1 2 3 4
2 4 4 4
3 6 5 4



0 2
1 −1
0 1
1 0


[

2
1

]
=

 6 3
8 4
10 5

[
2
1

]
=

1520
25

 .
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If C has more than one column, the reasoning given above just needs to
be applied separately for each column of C.

On account of this associativity property, when we writeA(BC) or (AB)C,
we can remove the parentheses and simply write ABC.

5.2 Non-commutativity

A matrix with the same number of rows and columns is a square matrix. If
A and B are square matrices of the same shape, then both AB and BA are
always valid matrix multiplications.

Matrix multiplication is not generally commutative. That is, it is possible
that AB ̸= BA for matrices A and B, even if they are square. Of course,
there are some exceptions where AB = BA does hold, but this is more the
exception rather than the rule. (Some exceptions are discussed below.) Thus,
matrix multiplication is said to be non-commutative.

Example.[
1 2
3 4

] [
1 1
1 1

]
=

[
3 3
7 7

]
,

[
1 1
1 1

] [
1 2
3 4

]
=

[
4 6
4 6

]
.

The non-commutativity should not be surprising if you think of the first
matrix as specifying a list of vectors, and the second matrix as specifying
how you want to linearly combine the vectors from the first matrix. These
matrices have very different roles!

5.3 Identity and diagonal matrices

A special exception to the non-commutativity rule is multiplication by the
n× n identity matrix In, defined by

In =


1 0 · · · 0
0 1 · · · 0
...

... . . . ...
0 0 · · · 1

 .

(We’ll drop the subscript n when it is clear from context.) The identity
matrix has value 1 along the diagonal entries (i.e., the (j, j)th entry of I is 1
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for all j ∈ {1, . . . , n}) and value 0 in all other entries. For any n× n matrix
A, we have AI = IA = A.

Another important class of square matrices are those for which all non-
diagonal entries have value 0: these are called diagonal matrices. The identity
matrix is an example of a diagonal matrix. If D and S are both n×n diagonal
matrices, then DS = SD, i.e., D and S commute! The result DS is also an
n×n diagonal matrix; its (i, i)th entry is the product of the (i, i)th entry of D
and the (i, i)th entry of S. Commutativity holds because scalar multiplication
is commutative (xy = yx for any scalars x and y).

Diagonal matrices are also “nice” in that computing the matrix-vector
product Dx for a n× n diagonal matrix D only requires n scalar multiplica-
tions, whereas computing Ax for a general n×n matrix typically requires n2

scalar multiplications.

6 Row-oriented matrices

We have hinted that the rows of matrices, even when defined column-wise, will
be of interest to us. We aren’t quite ready to see why just yet, but to prepare
for it, let us temporarily enter the alternate universe where matrices are
defined row-wise and interpret matrix multiplication from that perspective.

Let the rows of the m × n matrix A be the row vectors aT
1, . . . , a

T
m. The

symbol in the superscript, “T”, is the transpose symbol. For now, we only
use it to indicate that we want to change a column to a row: ai ∈ Rn is an
n-vector (treated as a column), while aT

i is a row vector. And similarly, let
the rows of the n× p matrix B be the row vectors bT

1, . . . ,b
T
n. So

A =

←− aT
1 −→
...

←− aT
m −→

 , B =

←− bT
1 −→
...

←− bT
n −→

 .

(The arrows here are printed just for visual effect; they don’t mean anything.)
For an n-vector x = (x1, . . . , xn) and an n× p matrix B as above, xTB is the
row vector obtained by linearly combining the rows of B:

xTB = x1b
T

1 + · · ·+ xnb
T

n.
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Thus, the multiplication of A by B yields the m× p matrix C whose ith row
cT

i is a linear combination of the rows of B as specified by aT

i , written

C =

←− cT
1 −→
...

←− cT
m −→

 =

←− aT
1B −→
...

←− aT
mB −→

 .

7 Block-wise matrix multiplication

One advantage of the “standard” definition of matrix multiplication from (3)
is that it easily generalizes to block-wise matrix multiplication. We’ll just give
three illustrative examples of this, rather than define it in full generality.

Example: four blocks. Let A be an m×n matrix, and let B be an n× p
matrix. Suppose each of {1, . . . ,m}, {1, . . . , n}, and {1, . . . , p} is partitioned
in two index sets:

• {1, . . . ,m} = R ∪ S, where R = {1, . . . , d} and S = {d+ 1, . . . ,m};

• {1, . . . , n} = T ∪ U , where T = {1, . . . , e} and U = {e+ 1, . . . , n};

• {1, . . . , p} = V ∪W , where V = {1, . . . , f} and W = {f + 1, . . . , p}.

So we can write each of A and B in block form as follows:

A =

[
AR,T AR,U

AS,T AS,U

]
, B =

[
BT,V BT,W

BU,V BU,W

]
.

Each of A and B can be viewed as a “2 × 2” matrix of “blocks”, where
the number of columns in an “A-block” is the same as the number of rows
in a corresponding “B-block” (e.g., AR,T and BT,W ). We can thus use the
block-wise generalization of the matrix multiplication rule in (3) to obtain

AB =

[
AR,TBT,V + AR,UBU,V AR,TBT,W + AR,UBU,W

AS,TBT,V + AS,UBU,V AS,TBT,W + AS,UBU,W

]
.

The result, an m× p matrix, is given as a “2× 2” matrix of “blocks”.
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Example: two blocks. Suppose, in the previous example, that S = W =
∅, so R = {1, . . . ,m} and V = {1, . . . , p}. So each of A and B is partitioned
into two blocks:

A =
[
AR,T AR,U

]
, B =

[
BT,V

BU,V

]
.

Then AB just has a single block:

AB = AR,TBT,V + AR,UBU,V .

Example: sum of outer products. Again, let A be an m × n matrix,
and let B be an n × p matrix. Now let the columns of A be a1, . . . , an, and
let the rows of B be bT

1, . . . ,b
T
n:

A =

 ↑ ↑
a1 · · · an
↓ ↓

 , B =

←− bT
1 −→
...

←− bT
n −→

 .

Here, we treat A as a single “row” of n × 1 “blocks”, and we treat B as a
single “column” of 1× p “blocks”. Using the block-wise generalization of the
matrix multiplication rule in (3), we write AB as a sum of n matrices:

AB = a1b
T

1 + · · ·+ anb
T

n.

Each of the terms aib
T

i in the summation is an m× p matrix, obtained from
multiplying a column vector ai by a row vector bT

i . Such a “product” of two
vectors is called an outer product. If x is an m-vector and y is a p-vector,
then we can think of the outer product xyT in two ways:

• a list of p scalings of the vector x, one per entry of y = (y1, . . . , yp),

xyT =

 ↑ ↑
y1x · · · ypx
↓ ↓

 ;

• a stack of m scalings of yT, one per entry of x = (x1, . . . , xm),

xyT =

←− x1y
T −→

...
←− xmy

T −→

 .
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