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1 Eigenvectors and eigenvalues

Let us consider an n×n matrix A as a linear operator on Rn: it linearly trans-
forms n-vectors into other n-vectors. One way we might try to understand A
(for some application) is by decomposing each operator into “simpler” parts,
each of which (we hope) is easier to understand.

For example, suppose we would like to understand the behavior of the
linear operator in the context of a linear dynamical system:

xt+1 = Axt for t ∈ {0, 1, 2, . . .}.

Here, the vector xt is regarded as the state of a system at time t; the state of
the system evolves over (discrete) time by applying the linear operator A to
the state. Evidently, the state at time t is Atx0, where At is just shorthand
for A written out t times. How can we understand the long term behavior of
the system as a function of the initial state x0?

One can, of course, simply simulate the evolution of the system starting
at x0 by repeatedly multiplying x0 by A. But this is expensive for large t
and not possible in finite time for t → ∞. Is there a better way?

Example. Let A be the 2× 2 matrix given as follows:

A =

[
−1/2 5/2

0 2

]
.

• Let v = (1, 1). Then Av = (2, 2) = 2v. In other words, the effect of
the operator A on v is simply to scale v by 2. So Atv = 2tv for all t.
Vectors on the line {cv : c ∈ R} stay there, but move away from 0.

• Let w = (1, 0). Then Aw = (−1/2, 0) = −(1/2)w. In other words,
the effect of the operator A on w is simply to scale w by −1/2. So
Atw = (−1/2)tw for all t. Vectors on the line {cw : c ∈ R} stay there,
but move closer to 0 on the opposite side.
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• Note that {v,w} is linearly independent, so every vector in R2 can be
written as a linear combination of v and w. So if x = av + bw, then

Atx = At(av + bw) = aAtv + bAtw = a 2t v + b

(
−1

2

)t

w.

The vectors v and w in the previous example are very special to the
matrix A: they are eigenvectors of the matrix A. We say a non-zero vector
v ∈ Rn is an eigenvector of an n × n matrix A if there is a scalar λ such
that Av = λv; this scalar λ is called the eigenvalue corresponding to the
eigenvector v. We also say that a scalar λ is an eigenvalue of an n×n matrix
A if there exists a non-zero vector v such that Av = λv. Note that if v
is an eigenvector of A, then every non-zero vector in span({v}) is also an
eigenvector of A with the same eigenvalue.

Given a scalar λ, it is easy to check whether λ is an eigenvalue of A.
Consider the following equivalences:

Av = λv ⇔ Av = λIv ⇔ Av−λIv = 0 ⇔ (A−λI)v = 0.

So, v is an eigenvector of A with corresponding eigenvalue λ if and only if v
is a non-zero vector in the nullspace of A− λI. And we have seen previously
how to find a basis for the nullspace of any matrix (e.g., via Elimination).

Example. Let A be the matrix defined by

A =

 4 2 2
−1 1 −1
−1 −1 1

 .

Suppose a little bird suggests to you that λ = 2 might be an eigenvalue of A.
To check, we “solve for” the nullspace of A− λI for λ = 2. We transform

A− 2I =

 4 2 2
−1 1 −1
−1 −1 1

−

2 0 0
0 2 0
0 0 2

 =

 2 2 2
−1 −1 −1
−1 −1 −1


to the following RREF matrix via elementary row operations: R =

[
1 1 1

]
(after dropping all-zeros rows). The homogeneous system of linear equations
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Figure 1: Plots of functions in Cperiodic([−π, π],R); the horizontal axis corre-
sponds to t ∈ [−π, π]. Left: a “nice” kernel function h(t). Middle: a “rough”
function f(t) (red solid line) and its convolution with h(t) (blue dashed line).
Right: same as middle plot but using a wider kernel function.

(A − 2I)x = 0 therefore has 2 free variables, FV = {2, 3}, so the nullspace
of A − 2I has dimension 2. The special solutions are s2 = (−1, 1, 0) and
s3 = (−1, 0, 1). So, the eigenvectors with eigenvalue 2 are the non-zero vectors
in span({(−1, 1, 0), (−1, 0, 1)}).

Important example. The concept of eigenvectors and eigenvalues extends
to linear operators on general vector spaces. Consider the inner product space
W = Cperiodic([−π, π],R) of continuous, real-valued functions on [−π, π] that
are periodic with period 2π, equipped with the inner product

⟨f, g⟩W =

∫ π

−π

f(t)g(t) dt.

The convolution operator Th : W → W, based on a specific “kernel” function
h ∈ W, is the operator that transforms a function f ∈ W into another
function g = Th(f) by “convolving” f with h:

g(t) =

∫ π

−π

f(t− x)h(x) dx.

Convolution operators are important in many applications. For instance, it is
common to transform a “rough” function into a “smoother” one by convolving
the rough function with a “nice” kernel function. See Figure 1.

We’ll show that the functions e0(t) = 1, ek(t) = cos(kt), and fk(t) =
sin(kt) for all k ∈ N are eigenvectors of the convolution operator Th. For
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simplicity, we assume h is an even function (i.e., h(x) = h(−x)). First, we
consider the constant function e0:

(The0)(t) =

∫ π

−π

h(x) dx = ⟨h, 1⟩W e0.

So e0 is an eigenvector of Th with corresponding eigenvalue ⟨h, e0⟩W. Next,
we consider ek for k ∈ N:

(Thek)(t) =

∫ π

−π

cos(k(t− x))h(x) dx

=

∫ π

−π

(cos(kt) cos(kx) + sin(kt) sin(kx))h(x) dx

= ek(t)

∫ π

−π

ek(x)h(x) dx+ sin(kt)
�������������:0∫ π

−π

sin(kx)h(x) dx

= ⟨ek, h⟩W ek(t),

where the second equality uses a standard trigonometric identity, and the
cancellation comes from the fact that sin(kx)h(x) is an odd function. So ek
is an eigenvector of Th with corresponding eigenvalue ⟨ek, h⟩W. Finally, we
consider fk for k ∈ N. Using a similar calculation, we find

(Thfk)(t) = ⟨ek, h⟩W fk(t).

So fk is an eigenvector of Th with corresponding eigenvalue ⟨ek, h⟩W.
If instead h is an odd function (i.e., h(−x) = −h(x)), we would reach

a similar conclusion but with different eigenvalues. It is worth pointing out
that every function h is the sum of an even function heven and an odd function
hodd. For such a function h = heven + hodd, we have Th = Theven

+ Thodd
.

It was fortunate in our first example that the n× n matrix A (for n = 2)
had n linearly independent eigenvectors. This is because they form a basis
for Rn, which means we are able to write every vector in Rn as a linear
combination of the eigenvectors of A. It is in this sense that we are able to
decompose A into simpler “parts” that are easier to understand. (We make
this more precise later in Section 4.)

However, not all n×n matrices have n linearly independent eigenvectors,
as the next examples show. (Also see Appendix B.)
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Examples.

• For θ ∈ [0, 2π), let R be the 2× 2 matrix given by

R =

[
cos(θ) − sin(θ)
sin(θ) cos(θ)

]
.

If v is a non-zero 2-vector, then the matrix-vector product Rv results
in a rotation of v by θ radians. This is on the same line as v if and
only if θ = 0 (no rotation) or θ = π (rotate 180◦). So if θ /∈ {0, π}, then
R does not have any eigenvectors.

• For a non-zero linear functional wT on Rn and a non-zero vector y in
the hyperplane H = {x ∈ Rn : wTx = 0} determined by w, let S be
the shear operator S = I + ywT. For example, the shear operator on
R3 for w = (1, 0, 0) and y = (0, 1, 0) is

S =

1 0 0
1 1 0
1 0 1

 .

Applying the shear operator S to a vector v results in v + (wTv)y, so
the amount of v moves in direction y is proportional to how “far” (in
a sense) v is from H. So if a non-zero vector v is not in H, then Sv
is not the same line as v. An eigenvector of S must be in H, so S can
have at most dim(H) = n− 1 linearly independent eigenvectors. (And
indeed it has exactly this many.)

An n×n matrix A that has n linearly independent eigenvectors is said to
be diagonalizable. This terminology is explained by the following proposition.

Proposition 1. If A is an n× n diagonalizable matrix, then there exists an
invertible n × n matrix V = [v1, . . . ,vn] whose columns are linearly inde-
pendent eigenvectors of A, and an n × n diagonal matrix Λ whose diagonal
entries are corresponding eigenvalues λ1, . . . , λn, such that

A = V ΛV −1.
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Note that for the matrices V and Λ from Proposition 1, we have

V −1AV = Λ,

a diagonal matrix. The matrix V is said to diagonalize A for this reason.

Proof of Proposition 1. By the Unique Linear Transformation Theorem, it
suffices to show that A and V ΛV −1 have the same behavior on a basis for Rn;
the basis we’ll use is {v1, . . . ,vn}. By definition, we have Avi = λivi since
vi is an eigenvector of A with corresponding eigenvalue λi. Now we show
V ΛV −1vi = λivi as well. Since V −1V = I, it follows that the V −1vi = ei,
the ith standard basis vector. Moreover, Λei = λiei because Λ is diagonal.1

And finally, V (λiei) = λiV ei = λivi since the ith column of V is vi.

2 Positive semidefinite matrices

Recall that an n×n matrix A is positive semidefinite (PSD) if it is symmetric
and ⟨x, Ax⟩ ≥ 0 for all n-vectors x. We also saw an equivalent definition: A is
positive semidefinite if A = BTB for some matrix B. In the course of proving
the equivalence of these two definitions, we proved the following: if A is PSD,
and A =

∑r
i=1 σiuiv

T

i is an SVD of A, then ui = vi for all i ∈ {1, . . . , r}.
This readily implies the following.

Theorem 1. An n × n matrix A is PSD if and only if A has an orthonor-
mal set of n eigenvectors for which the corresponding eigenvalues are non-
negative.

Proof. First, assume A is PSD. Let {v1, . . . ,vr} be (right) singular vectors of
A from an SVD, and take {vr+1, . . . ,vn} to be an ONB for NS(A). Because
CS(AT) and NS(A) are orthogonal complements in Rn, the set {v1, . . . ,vn}
is an ONB for Rn. Using the equality of left and right singular vectors for
PSD matrices, we have Avi = σivi for i ∈ {1, . . . , r}, and also Avi = 0 = 0vi

for i ∈ {r + 1, . . . , n}. This shows that the eigenvalues corresponding to
v1, . . . ,vn are non-negative.

Now instead assume A has an orthonormal set of n eigenvectors for which
the corresponding eigenvalues are non-negative. Then by Proposition 1, we

1The standard coordinate basis vectors are eigenvectors of diagonal matrices.

6



Eigenvectors and eigenvalues COMS 3251 Fall 2022 (Daniel Hsu)

can write A = V ΛV T (since V −1 = V T), where V is the matrix whose columns
are the n eigenvectors, and Λ is the diagonal matrix whose diagonal entries
are the corresponding eigenvalues (which are non-negative). Let B =

√
ΛV T,

so A = BTB. This shows that A is PSD.

Example. The 4× 4 matrix A is equal to BTB, for A and B given below:

A =


3 −1 −1 −1

−1 1 0 0
−1 0 1 0
−1 0 0 1

 , B =

−1 1 0 0
−1 0 1 0
−1 0 0 1

 . (1)

The matrix B has rank 3. Its singular values σ1, σ2, σ3 are 2, 1, 1, and corre-
sponding right singular vectors are

v1 =
1

2
√
3
(−3, 1, 1, 1),

v2 =
1√

12 + 6
√
3
(0,−1−

√
3,−1, 2 +

√
3),

v3 =
1√

12 + 6
√
3
(0,−1−

√
3, 2 +

√
3,−1).

The nullspace of B is spanned by v4 = (1/2, 1/2, 1/2, 1/2). It can be checked
that BTBvi = σ2

i vi for each i ∈ {1, 2, 3}, and BTBv4 = 0.
Note that the choice of right singular vectors of B—and hence the eigen-

vectors of A—is not unique. For instance, v2 and v3 can be replaced by any
two orthonormal vectors in their span. We can also replace v1 with −v1.

3 Symmetric matrices

Recall that an n × n matrix A is symmetric if AT = A. It turns out that
symmetric matrices behave much like PSD matrices when it comes to eigen-
vectors; the only difference is that the eigenvalues might be negative.

We can understand a symmetric n× n matrix A as follows:

A = (A− µI) + µI,
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where µ is the smallest value of uTAu among all unit vectors u ∈ Rn. The
matrix B = A− µI is PSD: if x ∈ Rn is non-zero, then letting u = x/∥x∥,

xTBx = ∥x∥2uT(A− µI)u

= ∥x∥2(uTAu− µ)

≥ ∥x∥2(µ− µ) = 0.

The inequality follows by definition of µ.
Let V be the orthogonal matrix whose columns are the eigenvectors of B

that form an ONB for Rn, as guaranteed by Theorem 1 since B is PSD. Then
V diagonalizes B; let Σ = V TBV be the resulting diagonal matrix, whose
diagonal entries are the corresponding eigenvalues, σ1, . . . , σn. The matrix V
then diagonalizes A:

V TAV = V T(B + µI)V = V TBV + µV TV = Σ + µI,

where the final step uses the fact that V is orthogonal. The matrix Λ = Σ+µI
is diagonal, with diagonal entries λi = σi + µ for i ∈ {1, . . . , n}. Note that
while all σi were non-negative, it is possible that some of the λi = σi + µ are
negative (as µ could be negative).

The argument above proves the following theorem.

Theorem 2. Let A be a symmetric n×n matrix. Then A has n eigenvectors
that form an ONB for Rn.

4 Eigenspaces

In the last example in Section 2, the fact that there are two options for v1

is clear: either v1 or −v1 leads to the same gain (in the context of the best
fitting subspace problem). The ambiguity between which of v1 and −v1 is
chosen may not seem so bad. But, perhaps more disconcerting is that in the
subspace orthogonal to span(v1), there is an entire two-dimensional subspace
in which every unit vector leads to the same gain. The difference between a
one-dimensional subspace and two-dimensional subspace (of an inner product
space) is critical. In a one-dimensional subspace, there are exactly two unit
vectors. In a two-dimensional subspace, there are infinitely-many pairs of
orthonormal vectors.
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This motivates the consideration of entire subspaces of eigenvectors that
correspond to the same eigenvalue. If λ is an eigenvalue of an n × n matrix
A (not necessarily PSD or symmetric), then we define Eλ = {x ∈ Rn : Ax =
λx} to be the eigenspace of A corresponding to the eigenvalue λ.

Some basic properties of eigenspaces are as follows:

• The non-zero vectors of Eλ are all eigenvectors of A with λ as the
corresponding eigenvalue.

• The set Eλ is a subspace of Rn, because it is the nullspace of the matrix
A − λI. And since it contains a non-zero vector (an eigenvector), it
has dimension at least one. (As we have seen, an eigenspace could have
dimension more than one.)

Some extreme examples. The distinct eigenvalues of the n× n diagonal
matrix A with Ai,i = i are 1, 2, . . . , n; the eigenspace Ei corresponding to
the eigenvalue i is Ei = span({ei}). The n× n identity matrix has only one
distinct eigenvalue, 1, and its corresponding eigenspace is E1 = Rn.

How can we understand the eigenspaces of a matrix corresponding to
distinct eigenvalues? First, eigenvectors corresponding to distinct eigenvalues
are linearly independent. This is intuitively true for two such eigenvectors,
and an inductive argument shows that it is true for any number of eigenvectors
corresponding to distinct eigenvalues.

Proposition 2. Let A be a matrix, and suppose λ1, . . . , λk are distinct eigen-
values of A. Then if v1, . . . ,vk are eigenvectors of A such that λi is the
eigenvalue corresponding to vi, then v1, . . . ,vk are linearly independent.

A simple consequence of Proposition 2 is that the number of distinct
eigenvalues of an n× n matrix is at most n, since we cannot have more than
n linearly independent vectors in Rn.

Next, if we consider a basis for each eigenspace corresponding to distinct
eigenvalues, then the union of these bases is also linearly independent.

Proposition 3. Let A be a matrix, and suppose λ1, . . . , λk are distinct eigen-
values of A. Let Bi be a basis for the eigenspace Eλi

corresponding to λi, for
each i ∈ {1, . . . , k}. Then B1 ∪ · · · ∪Bk is linearly independent.
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Therefore, the eigenspaces Eλ1
, . . . , Eλk

corresponding to distinct eigen-
values λ1, . . . , λk provide a clean characterization of the behavior of Ax for
all vectors x in the sumset W = Eλ1

+ · · ·+Eλk
in the following sense: every

vector x ∈ W can be (uniquely) written as a sum of the “parts” of x from
these eigenspaces, and the effect of multiplying A by x is simply to scale each
“part” by the corresponding eigenvalue.

Theorem 3 (Eigenspace Structure Theorem). Let A be an n × n matrix.
Let λ1, . . . , λk be the distinct eigenvalues of A; let Eλi

= {x ∈ Rn : (A −
λiI)x = 0} be the eigenspace of A corresponding to its eigenvalue λi; and let
W = Eλ1

+ · · · + Eλk
. For every x ∈ W, there are unique vectors y1, . . . ,yk

with yi ∈ Eλi
for each i ∈ {1, . . . , k} such that2

x = y1 + · · ·+ yk

and Ax = λ1 y1 + · · ·+ λk yk.

(If A is diagonalizable, then W = Rn.) Furthermore, if A is symmetric, then
yi = Pix for each i ∈ {1, . . . , k}, where Pi is the orthoprojector for Eλi

, so

I = P1 + · · ·+ Pk

and A = λ1 P1 + · · ·+ λk Pk. (2)

The decomposition of a symmetric matrix A in (2), which is unique up
to the ordering of the sum, is the spectral decomposition of A; the distinct
eigenvalues {λ1, . . . , λk} make up the spectrum of A.

Example. Let A be the 4 × 4 matrix from (1). The spectrum of A is
{λ1, λ2, λ3} = {16, 4, 0}, and we have

Eλ1
= span({(a, 0, 0, a) : a ∈ R}),

Eλ2
= span({(0, b, c, 0) : (b, c) ∈ R2}),

Eλ3
= span({(a, 0, 0,−a) : a ∈ R}).

Let P1, P2, and P3 be the corresponding orthoprojectors for these subspaces.
Then A = 16Pλ1

+ 4Pλ2
+ 0Pλ3

.

2In terms of the concept of direct sums, we have W = Eλ1 ⊕ · · · ⊕ Eλk
.
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A Linear independence and eigenspaces

Proof of Proposition 2. The proof is by induction on k. In the base case
k = 1, it is clear that {v1} is linearly independent because, by definition,
v1 ̸= 0.

For some k ≥ 2, assume as the inductive hypothesis that eigenvectors
v1, . . . ,vk−1 are linearly independent, where λi is the eigenvalue correspond-
ing to vi. Now consider an additional eigenvector vk with corresponding
eigenvalue λk, distinct from λ1, . . . , λk−1. Suppose the scalar c1, . . . , ck satisfy

c1 v1 + · · ·+ ck vk = 0. (3)

We need to show that c1 = · · · = ck = 0 to show that v1, . . . ,vk are linearly
independent.

Multiply both sides of (3) on the left by A − λkI. By linearity and the
fact (A− λkI)vi = (λi − λk)vi for each i ∈ {1, . . . , k}, we have

c1(λ1 − λk)v1 + · · ·+ ck−1(λk−1 − λk)vk−1 = 0.

(The kth term on the left-hand side has vanished.) Since v1, . . . ,vk−1 are
linearly independent by the inductive hypothesis, we must have

c1(λ1 − λk) = · · · = ck−1(λk−1 − λk) = 0.

The distinctness of λ1, . . . , λk implies that ci = 0 for each i ∈ {1, . . . , k − 1}.
Therefore, (3) becomes ckvk = 0. Since vk is non-zero, this equation can
only hold if ck = 0. So we have shown that c1 = · · · = ck = 0. This implies
that v1, . . . ,vk are linearly independent, which proves the inductive step. So
the overall claim follows by the principle of mathematical induction.

A corollary of Proposition 2 is the following.

Corollary 1. Let A be a matrix, and suppose λ1, . . . , λk are distinct eigenval-
ues of A. Then if vectors v1, . . . ,vk satisfy vi ∈ Eλi

for each i ∈ {1, . . . , k}
and v1 + · · ·+ vk = 0, then v1 = · · · = vk = 0.

Proof of Proposition 3. Let Bi = {vi,1, . . . ,vi,ni
}, where ni = |Bi|. Suppose

there are scalars ci,j for i ∈ {1, . . . , k} and j ∈ {1, . . . , ni} such that

k∑
i=1

ni∑
j=1

ci,jvi,j = 0.
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We need to show that all of these ci,j’s must be zero.
Define wi =

∑ni

j=1 ci,jvi,j, so wi ∈ Eλi
. Then we have w1 + · · ·+wk = 0.

By Corollary 1, we must have w1 = · · · = wk = 0, i.e., for each i,

ni∑
j=1

ci,jvi,j = 0.

But vi,1, . . . ,vi,ni
are linearly independent since Bi is a basis, so ci,1 = · · · =

ci,ni
= 0. This holds for all i, and thus all of these scalars ci,j must be zero.

So we have proved the linear independence of B1 ∪ · · · ∪Bk.

Proof of Theorem 3. We just prove the first part of the claim, since the “Fur-
thermore” part for symmetric matrices is immediate after combining with
Theorem 2.

For each i ∈ {1, . . . , k}, let Bi = (vi,1, . . . ,vi,ni
) be an ordered basis for

Eλi
, where ni = dimEλi

. By Proposition 3, B = B1 ∪ · · · ∪Bk is an ordered
basis for W = Eλ1

+ · · ·+Eλk
. Therefore, for every x ∈ W, there is a unique

choice of scalars c1,1, . . . , c1,n1
, . . . , ck,1, . . . , ck,nk

such that

x = y1 + · · ·+ yk

where, for each i ∈ {1, . . . , k},

yi = ci,1 vi,1 + · · ·+ ci,ni
vi,ni

.

Since yi ∈ Eλi
, it follows that Ayi = λiyi. And therefore, by linearity,

Ax = λ1 y1 + · · ·+ λk yk.

It remains to show that the choice of y1, . . . ,yk is unique. First, we prove
that for every i ∈ {1, . . . , k},

Eλi
∩

∑
j ̸=i

Eλj

 = {0}.

Suppose v is a vector in the intersection. Write v as a linear combination of
basis vectors from Bi,

v = ci,1 vi,1 + · · ·+ ci,ni
vi,ni

,
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and then write v as a linear combination of basis vectors from
⋃

j ̸=iBj,

v =
∑
j ̸=i

cj,1 vj,1 + · · ·+ cj,nj
vj,nj

.

The difference is 0, and now 0 expressed as a linear combination of basis
vectors from B:

0 = ci,1 vi,1 + · · ·+ ci,ni
vi,ni

−
∑
j ̸=i

cj,1 vj,1 + · · ·+ cj,nj
vj,nj

.

SinceB is linearly independent, all of the coefficients in the linear combination
must be zero. This we conclude that v = 0.

Now suppose x = z1+ · · ·+ zk where zi ∈ Eλi
for each i ∈ {1, . . . , k}. We

show that zi = yi for each i ∈ {1, . . . , k}. Since z1 + · · ·+ zk = y1 + · · ·+yk,
it follows that for every i ∈ {1, . . . , k}, we have

zi − yi =
∑
j ̸=i

yj − zj.

The left-hand side is in Eλi
, while the right-hand side is in

∑
j ̸=iEλj

. But
the intersection of these two subspaces is {0}, as argued above. Hence we
conclude that zi = yi for every i ∈ {1, . . . , k}.

Finally, it is clear that if A is diagonalizable, then |B| = n by Proposi-
tion 3, and hence W = Rn by the Basis Sufficiency Theorem.

B The determinant and characteristic poly-
nomial of a matrix

There is a function det : Mn×n(R) → R called the determinant that is com-
monly used to derive a test of diagonalizability. (It is also used for other
things, such as computing volumes of parallelepipeds, which is needed to
perform a change-of-variables in multiple integration.)

Here are some key properties of the determinant function:

1. If B is obtained from A by swapping two rows, then det(B) = − det(A).

13



Eigenvectors and eigenvalues COMS 3251 Fall 2022 (Daniel Hsu)

2. If B is obtained from A by multiplying a row by the scalar c, then
det(B) = c det(A).

3. If B is obtained from A by adding a multiple of row i to row j, where
i ̸= j, then det(B) = det(A).

4. det(I) = 1.

5. det(AB) = det(A) det(B).

6. A is invertible if and only if det(A) ̸= 0.

(The last two properties can be derived from the first four.)
Using the definition of eigenvalue, the Invertibility Theorem, and the final

property of determinants given above, we find that the following statements
are equivalent:

• λ is an eigenvalue of A;

• Av = λv for some non-zero vector v;

• (A− λI)v = 0 for some non-zero vector v;

• A− λI is not invertible;

• det(A− λI) = 0.

For an n × n matrix A, if t is treated as a variable, then det(A − tI) is
a polynomial of degree n in the variable t, with leading coefficient (−1)n.
This polynomial is called the characteristic polynomial of A. The roots of
the characteristic polynomial of A are the eigenvalues of A. This polynomial
is said to split if it can be factored as

det(A− tI) = (−1)n(t− λ1)
d1 · · · (t− λk)

dk,

where λ1, . . . , λk are distinct scalars, and d1, . . . , dk are positive integers that
sum to n. The distinct scalars λ1, . . . , λk are the distinct roots of the char-
acteristic polynomial, and hence they are the distinct eigenvalues of A. The
number di is the algebraic multiplicity of λi. The dimension of the eigenspace
Eλi

is called the geometric multiplicity of λi; it is an integer between 1 and
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the algebraic multiplicity of λi. In order to have n linearly independent eigen-
vectors, it must be the case that the geometric multiplicity is equal to the
algebraic multiplicity, for each of the distinct eigenvalues.

Theorem 4. A square matrix is diagonalizable if and only if (i) its charac-
teristic polynomial splits, and (ii) for each of the distinct eigenvalues of the
matrix, the geometric multiplicity is equal to the algebraic multiplicity.

Example. Let A be the matrix

A =

[
1 0
1 1

]
.

The characteristic polynomial of A is

det

([
1 0
1 1

]
− t

[
1 0
0 1

])
= det

([
1− t 0
1 1− t

])
= (t− 1)2.

This polynomial splits. It has a single root (eigenvalue), 1, with algebraic
multiplicity 2. The eigenspace of A corresponding to this eigenvalue is

E1 = {x ∈ R2 : (A− I)x = 0}

=

{
(x1, x2) ∈ R2 :

[
0 0
1 0

] [
x1
x2

]
=

[
0
0

]}
= {(0, x2) : x2 ∈ R}.

The dimension of E1 is 1, so the geometric multiplicity of the eigenvalue 1 is
1 ̸= 2. Hence A is not diagonalizable.

15


	Eigenvectors and eigenvalues
	Positive semidefinite matrices
	Symmetric matrices
	Eigenspaces
	Linear independence and eigenspaces
	The determinant and characteristic polynomial of a matrix

