
Connectivity in graphs
COMS 3251 Fall 2022 (Daniel Hsu)

1 Graphs and incidence matrices

A graph is a tuple (V,E), where V is a finite set, and E ⊆ {{u, v} : u, v ∈
V, u ̸= v} is a subset of unordered pairs of elements from V. The elements of
V are called vertices, and the elements of E are called edges. A graph models
relationships between vertices. For example:

• The vertices could correspond to towns, and an edge could represent
the presence of a road connecting two towns.

• The vertices could correspond to people, and an edge could represent a
“friendship” relation on the social network du jour.

• The edges could represent circuit elements (e.g., resistors), and the
vertices could be the junctions between these elements.

For reasons that will become clear later, we will treat edges as ordered pairs,
where we arbitrarily decide on which of the two vertices in an edge comes
first. So every edge is now a directed edge, where (s, t) means “s→ t”.

We denote the number of edges by m = |E| and the number of vertices by
n = |V|. To simplify notation later, we let the vertices be the first n positive
integers V = {1, . . . , n}, and we also arbitrarily label the edges {1, . . . ,m}.

The (edge-vertex) incidence matrix 1 A for a graph is anm×nmatrix, with
rows corresponding to edges and columns corresponding to vertices, where

Ae,v =


−1 if edge e starts at v,

1 if edge e ends at v,

0 otherwise.

We’ll see that graph-theoretic connectivity properties of a graph will have
linear algebraic implications for its incidence matrix. Moreover, a linear
algebraic algorithm that operates on this matrix will have a graph-theoretic
interpretation.

1Please do not confuse the incidence matrix with the adjacency matrix of a graph.
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Running example, part 1. We use the following graph and incidence
matrix in our running examples:

1 2

4 3

edge 1

edge 4

edge 2edge 5
edge 3

A =


−1 1 0 0
0 −1 1 0
−1 0 1 0
0 0 −1 1
−1 0 0 1

.

2 Potential differences

Suppose we assign a value—which we’ll call a “potential”—to each each
vertex in a graph. Such an assignment is described by an n-vector x =
(x1, . . . , xn). The matrix-vector product b = (b1, . . . , bm) = Ax yields an
m-vector in which be is the potential difference2 across edge e. If edge e is
the ordered pair (s, t), then

be =
∑
v∈V

Ae,vxv = xt − xs.

Given the potential differences b and the incidence matrix A, is it possible
to uniquely determine the potentials x? No: the potential differences are the
same if we increase the potential of every vertex by the same amount. In
particular, if x = (c, . . . , c) for any scalar c, then Ax = 0. This shows that
the columns of the incidence matrix A are linearly dependent. In particular,
A has at most n− 1 linearly independent columns.

Since, in any matrix, the maximum number of linearly independent columns
is the same as the maximum number of linearly independent rows (which we
call the rank of the matrix), we know that the incidence matrix A has at
most n− 1 linearly independent rows. (Remember this for later!)

3 Paths and cycles

The incidence matrix A was, in a sense, defined row-wise. What can we learn
about the rows of A from studying the graph structure? In this section, we

2In electrical circuits, differences in electrical potentials are called voltages, and the voltages between
junctions are what determine the behavior (e.g., flow of electric charge) of the circuit.
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look at implications of the presence of paths and cycles.
A word of caution: we are going extensively use row-wise matrix multi-

plication in this section (and the next one). Specifically, we will multiply a
row vector (a 1 ×m matrix) by the incidence matrix (an m × n matrix) to
produce another row vector (a 1× n matrix):

[
y1 · · · ym

] ← aT
1 →
...

← aT
m →

 = y1 a
T

1 + · · ·+ ym aT

m.

If you prefer, you can convert all row vectors into columns, and use the usual
matrix-vector multiplication that you may be more used to.

We first consider the implication of a path in the graph. Suppose there is
a path from s to t in the graph, with s ̸= t, and for now assume it respects
the (arbitrarily determined) directions of the edges. Then summing the rows
of A corresponding to these edges results in a row with −1 in component s,
a 1 in component t, and zeros elsewhere. We specify the path using a row
vector yT with the appropriate coefficients from {0, 1} so that yTA computes
the sum of rows.

Running example, part 2. Consider the path from s = 1 to t = 4 using
edges 1, 2, and 4. Adding these rows yields the desired row:

[
1 1 0 1 0

]

−1 1 0 0
0 −1 1 0
−1 0 1 0
0 0 −1 1
−1 0 0 1

 =
[
−1 0 0 1

]
.

Suppose, now, that there is a path from s to t, again with s ̸= t, but
only by using some edges in the “reverse direction”. We can again obtain the
same row as above by linearly combining rows of A, but this time by adding
the rows for edges used in the “forward direction”, and then subtracting the
rows for edges used in the “reverse direction”. We can think of this as scaling
the rows for “reverse direction” edges by −1 before adding up the rows; the
effect of the scaling is to flip the directions of these edges. We call this the
“signed path sum” of the rows corresponding to the edges in the path; it is
also specified by a row vector yT but now with coefficients in {−1, 0, 1}.
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Running example, part 3. Consider the path from s = 2 to t = 1 using
edges 2, 4, and 5. The signed path sum of these rows yields the desired row:

[
0 1 0 1 −1

]

−1 1 0 0
0 −1 1 0
−1 0 1 0
0 0 −1 1
−1 0 0 1

 =
[
1 −1 0 0

]
.

Now we consider the implication of a cycle in the graph. By a cycle, we
mean a path in the graph that starts and ends at the same vertex. As above,
we allow edges to be used in the “reverse direction”. Then, using the signed
path sum of the rows corresponding to the path, we obtain the all-zeros row.
(What is the signed path sum if you remove one of the edges in the cycle?)

Running example, part 4. Consider the cycle starting at 1 using edges
1, 2, 4, and 5. The signed path sum of these rows yields the all-zeros row:

[
1 1 0 1 −1

]

−1 1 0 0
0 −1 1 0
−1 0 1 0
0 0 −1 1
−1 0 0 1

 =
[
0 0 0 0

]
.

So, if the graph has a cycle, then the rows of the incidence matrix are
linearly dependent, because we can linearly combine their rows to produce
the all-zeros row in a non-trivial way. Here is the contrapositive:

Theorem 1. If the rows of the incidence matrix of a graph are linearly in-
dependent, then the graph is acyclic (i.e., has no cycles).

4 CR factorization and acyclic subgraphs

Recall the algorithm that produces the CR factorization of a matrix A: it
yields a matrix C whose columns are a linearly independent subset of the
columns of A, of maximum size, and a matrix R that specifies how to obtain
columns in A as linear combinations of columns in C, such that A = CR.
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Let us apply the same algorithm but now to the rows of A. This means
we apply the algorithm to the transpose of A, written AT (read aloud as
“A transpose”). To obtain the transpose of a matrix, turn every row of the
matrix into a column, and then arrange these columns side-by-side in the
same top-to-bottom order they were originally in as rows.3 The result is a
“row-wise CR factorization” of A, which we write as

AT = CR, or, equivalently, A = RTCT.

The rows of CT are a linearly independent subset of rows of A, of maximum
size, such that every row of A is a linear combination of the rows in this
extracted subset, as specified by the matrix RT. This subset of rows in CT

corresponds to a subgraph of the original graph: it retains only a subset of
the original edges. By Theorem 1, the subgraph is acyclic.

So, the row-wise CR factorization of the incidence matrix extracts an
acyclic subgraph of the original graph with as many edges as possible.

Running example, part 5. Let the rows of A be denoted by aT
1, . . . , a

T
5:

AT =

a1 a2 a3 a4 a5

 =


−1 0 −1 0 −1
1 −1 0 0 0
0 1 1 −1 0
0 0 0 1 1

 .

The execution of the CR factorization algorithm on AT is as follows.

• Initially: C is the empty list.

• Iteration k = 1: a1 /∈ CS(C), so a1 is appended to C.

• Iteration k = 2: a2 /∈ CS(C), so a2 is appended to C.

• Iteration k = 3: a3 = a1 + a2, so there is no change to C.

• Iteration k = 4: a4 /∈ CS(C), so a4 is appended to C.

• Iteration k = 5: a3 = a1 + a2 + a4, so there is no change to C.

3Or: turn every column of the matrix into a row, and then arrange these rows from top-to-bottom in the
same left-to-right order they were originally in as columns.
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The final row-wise CR factorization of A is A = RTCT, where

RT =


1 0 0
0 1 0
1 1 0
0 0 1
1 1 1

 , CT =

← aT
1 →

← aT
2 →

← aT
4 →

 =

−1 1 0 0
0 −1 1 0
0 0 −1 1

 .

5 Connectivity

Finally, let us consider the implication of the connectedness of the graph.
Here, by connected, we mean that there is a path between every pair of
vertices. Again, we allow paths to use edges in the “reverse direction”.

If the graph is connected, then there is a path from vertex 1 to every other
vertex. This means that each of the n− 1 rows of the matrix Z, defined by

Z =


−1 1 0 · · · 0
−1 0 1 · · · 0

...
−1 0 0 · · · 1

 ,

can be obtained by a signed path sum of the rows of A. Therefore, connec-
tivity implies that there is an (n− 1)×m matrix Y such that

Y A = Z. (1)

The ith row of Y corresponds to a path that starts at vertex 1 and ends at
vertex i + 1. It is clear that the n − 1 rows of this matrix Z are linearly
independent. We are able to produce n− 1 linearly independent rows using
linear combinations of the rows of A.

Running example, part 6. We show how to reach all other vertices from
vertex 1:

Y A =

0 −1 0 −1 1
1 1 0 0 0
0 0 1 1 0



−1 1 0 0
0 −1 1 0
−1 0 1 0
0 0 −1 1
−1 0 0 1

 =

−1 1 0 0
−1 0 1 0
−1 0 0 1

 .
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(By no means were these the only ways to reach the other vertices from 1.)

Let us substitute the row-wise CR factorization of A into (1):

Y RTCT = Z, (2)

and think of Y RT together as a single matrix, so the equation shows how to
linearly combine the rows of CT to produce the rows of Z.

If k is the number of rows in CT, then (2) shows that the n − 1 linearly
independent rows of Z are in the span of the k linearly independent rows of
CT. By the Exchange Theorem, we must have n−1 ≤ k. On the other hand,
as you recall from Section 2, there are at most n − 1 linearly independent
rows of A. Since rows of CT are a subset of the rows of A, we have k ≤ n− 1.
We conclude k = n− 1.

To summarize: if a graph is connected, then applying the row-wise CR
factorization algorithm to its incidence matrix extracts an acyclic subgraph
of the original graph of size exactly n− 1. Such a subgraph is a tree, and it
is called a spanning tree of the original graph. And the rank of the incidence
matrix is exactly n− 1 in this case.

6 Disconnected graphs

Suppose a graph has p connected components, p > 1. Say the components
are V1, . . . ,Vp, where Vi ∩ Vj = ∅ and V1 ∪ · · · ∪ Vp = {1, . . . , n}. For
simplicity, assume V1 is the first |V1| positive integers, V2 is the next |V2|
positive integers, and so on. Then, it is possible to label the edges so that
the incidence matrix A for the graph has the “block diagonal” form

A =

 A1 zeros zeros

zeros . . . zeros

zeros zeros Ap

.
Here, the submatrix Ai is the incidence matrix for the ith component, and as
argued above, it has |Vi| − 1 linearly independent rows. Note: it is possible
that some of these blocks are empty (corresponding to components with a
single vertex and no edges). So the overall matrix A has

∑p
i=1(|Vi|−1) = n−p

linearly independent rows. This is the rank of the matrix A.
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A Fundamental subspaces

This appendix can be read after studying the concepts of column space,
nullspace, row space, and left nullspace.

Let A be the edge-vertex incidence matrix for a graph (V,E). We consider
the four fundamental subspaces of A.

A.1 Column space

Recall from Section 2 that the matrix-vector product Ax for any vector x
of “potentials” yields a vector of potential differences across edges. So the
column space CS(A) contains vectors specifying potential differences across
edges realizable by some assignment of potentials to vertices.

If r is the rank of A, then is a subset of r vertices in V such that the
corresponding columns of A form a basis for CS(A). This means that any
vector of realizable potential differences across edges can be obtained by
assigning potential values to this set of vertices, and assigning 0 potential to
the remaining vertices.

A.2 Nullspace

Starting with a vector x that assigns potentials to every vertex in the graph,
adding the same amount c to the potentials at every vertex does not change
the potential differences. In other words, A(x + c1) = Ax, where 1 =
(1, . . . , 1) is the all-ones vector. This implies that 1 ∈ NS(A), so the di-
mension of the nullspace is at least 1.

If the graph is connected, then we saw in Section 5 that A has n−1 linearly
independent rows; in this case, dim(NS(A)) = 1. From Section 6, we see that
if the graph has p connected components V1, . . . ,Vp, then A has n−p linearly
independent rows, i.e., rank(A) = n − p. This means dim(NS(A)) = p. For
each connected component Vi, let vi be the vector with 1’s in components
j ∈ Vi and 0’s elsewhere. So vi is the “all ones” vector for just the ith
connected component. Then {v1, . . . ,vp} is a basis for NS(A).

In summary, the nullspace is the space of vectors that assign the same
“potential” all vertices in the same connected component.
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A.3 Row space

If p is an n-vector with −1 in component s and a 1 in component t, and zeros
elsewhere, then p is in the row space CS(AT) of A if there is a path from s
to t in the graph. Linear combinations f = (f1, . . . , fn) of such vectors are
also in CS(AT). These vectors correspond to flows in the graph, where (say)
water is injected into some vertices (vertices i such that fi < 0) and extracted
from other vertices (vertices i such that fi > 0); |fi| is the amount of (or,
technically, the rate at which) water is injected or extracted.

Linearly independent subsets of rows correspond to acyclic subgraphs. If
the graph is connected, then we can obtain n− 1 linearly independent rows
of A, a basis for the row space, which corresponds to a spanning tree.

If the graph has p > 1 connected components, we can find n− p linearly
independent rows of A (again, a basis for the row space), and they correspond
to a “spanning forest” composed of p trees, one in each component.

A.4 Left nullspace

If yT specifies the signed path sum for a cycle in the graph, then yTA = 0T.
The span of all such vectors y is the left nullspace NS(AT) of A.

If the graph is connected, then a basis for NS(AT) can be obtained as
follows. Let T denote the edges of any spanning tree for the graph. Note
that |T| = n − 1. For each edge e = (i, j) in E \ T, consider the cycle that
contains i and edges from T. This cycle is unique, because there is exactly
one path between the endpoints of e using edges in T. Let yT

e be the row
vector that specifies the signed path sum for this cycle. Notice that the set
B = {ye : e ∈ E \ T} of such vectors is linearly independent: ye is the only
vector with a non-zero value in the component corresponding to edge e. The
cardinality of this set is |E\T| = m−(n−1). By the Dimension Theorem and
the fact rank(AT) = rank(A) = n− 1, we have dim(NS(AT)) = m− (n− 1).
Hence, B is a basis for the left nullspace of A.

If the graph has p > 1 connected components, the construction from above
applied to each component separately will, again, yield a basis for NS(AT).

So the left nullspace is spanned by vectors corresponding to particular
sets cycles in the graph. Sometimes these cycles are called “small loops”,
since they appear by adding just a single edge to a spanning tree (or forest).
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B Orthogonality

This appendix can be read after studying the concept of orthogonal subspaces.
Let A be the edge-vertex incidence matrix for a graph (V,E). We inter-

pret what it means for certain pairs of fundamental subspaces of A to be
orthogonal.

B.1 Column space and left nullspace

The column space CS(A) contains vectors b specifying potential differences
across edges realizable by some assignment of potentials to vertices. The left
nullspace NS(AT) is spanned by vectors y that specify signed path sums for
cycles in the graph. Since CS(A) and NS(AT) are orthogonal, the vectors b
and y must be orthogonal:

⟨b,y⟩ =
∑
e∈E

beye = 0.

Notice that ye = 0 if edge e is not in the cycle. The equation says that the
(signed) sum of potential differences around the cycle must be zero. In the
theory of electrical networks, this is called Kirchhoff’s Voltage Law (KVL).

B.2 Row space and nullspace

Assume that the graph is connected, so the nullspace of A is NS(A) =
span({1}). A vector f = (f1, . . . , fn) in the row space CS(AT) of A repre-
sents a flow in the graph: when fi is negative, we inject |fi| units of water
into vertex i, and when fi is positive, we extract |fi| units of water from the
vertex i. Since CS(AT) and NS(A) are orthogonal, the vector f satisfies

⟨f ,1⟩ =
∑
i∈V

fi = 0.

This says that the total amount of water injected in must equal the total
amount of water extracted out. In the theory of electrical networks, this is a
consequence of Kirchhoff’s Current Law (KCL).

If there are p > 1 connected components, then the sum of the fi’s within
each component must also be zero.
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