
COMS 4774 Spring 2021 Scribe: Daniel Hsu (djh2164)
September 1, 2017 Editor: Chris Alberti (ca2790)

Batch learning via online prediction

1 Introduction

One of the major applications of online learning is batch learning (i.e., offline learning).
In batch learning for binary classification, there is a sequence of labeled examples(

(x1, y1), (x2, y2), . . . , (xn, yn)
)
∈ (X × {±1})n

called the “training data”, and the goal is to find a classifier with small prediction
error. The training data are assumed to be drawn i.i.d. from a fixed probability
distribution P. The prediction error of a classifier f : X → {±1} is the probability
that the classifier mis-classifies a random example (x, y) drawn from P:

err(f) := P(f(x) 6= y).

A batch learning algorithm takes as input the training data and returns a classifier.
We’ll also talk about randomized classifiers f ; the probability defining err(f) is then
taken with respect to both the internal randomization in f as well as the random
draw (x, y) from P.

We abstractly think of an online prediction algorithm as taking as input a sequence
of n labeled examples, and producing a sequence of classifiers f1, f2, . . . , fn, fn+1 : X →
{±1}. The t-th classifier ft can only depend on the first t − 1 labeled examples.
Although not all online prediction algorithms fit this template, it is sufficient for most
cases. What algo-

rithms don’t
fit this tem-
plate?

2 Expected prediction error vs mistake bounds

In expectation, the prediction error of the classifier returned by the batch learning
algorithm B can be written as

E
(
1{B(S1:n)(xn+1)6=yn+1}

)
where

S1:n+1 :=
(
(x1, y1), (x2, y2), . . . , (xn+1, yn+1)

)
is a sequence of n + 1 labeled examples drawn i.i.d. from P, and S1:n denotes the
sequence of the first n such examples. If B is a randomized algorithm, then the
expectation above is also taken with respect to the random bits used by B.

1



The following is a simple way to convert an online prediction algorithm A such
as Perceptron and Winnow into a (randomized) batch learning algorithm OTBA in a
way that bounds the expected prediction error of OTBA in terms of a mistake bound
for A.

Algorithm 1 Online-to-batch learning algorithm OTBA
input Training data S1:n := ((x1, y1), (x2, y2), . . . , (xn, yn)).
1: Run A with the sequence S1:n to produce classifiers f1, f2, . . . , fn, fn+1.
2: Pick T ∈ {1, 2, . . . , n+ 1} uniformly at random.
3: return fT .

Another way to interpret Algorithm 1 is as follows.

1. RunA on the training data sequence, and keep all n+1 classifiers f1, f2, . . . , fn, fn+1.
generated along the way.

2. The final classifier used for prediction is a randomized classifier: to predict on a
new instance x, first randomly choose fT ∈ {f1, f2, . . . , fn+1}, and then predict
fT (x).

Theorem 1. Let MA,n+1 be the number of mistakes made by online prediction algo-
rithm A on a sequence of n + 1 i.i.d. examples S1:n+1 drawn from P. The expected
prediction error of OTBA(S1:n) is E(MA,n+1)/(n+ 1).

Proof. By direct computation:

E
(
1{OTBA(S1:n)(xn+1)6=yn+1}

)
=

n+1∑
t=1

Pr(T = t) · E
(
1{OTBA(S1:n)(xn+1)6=yn+1} |T = t

)
=

n+1∑
t=1

1

n+ 1
E
(
1{ft(xn+1)6=yn+1}

)
=

n+1∑
t=1

1

n+ 1
E
(
1{ft(xt) 6=yt}

)
=

1

n+ 1
E

n+1∑
t=1

1{ft(xt)6=yt}

 .

The penultimate step is true because ft is only a function of S1:t−1, and because the
distribution of (S1:t−1, (xn+1, yn+1)) is the same as that of (S1:t−1, (xt, yt)). The sum
in the final expectation is MA,n+1.

2



Theorem 1 shows that an online prediction algorithm with a small mistake bound
can be effectively used for batch learning. If the mistake bound of A for a sequence of
n+ 1 examples is sublinear in n, then the expected prediction error of OTBA is o(1).
Indeed, the mistake bound for Perceptron and Winnow are constant in the “realizable”
setting (when there is a half-space function that is always correct with a margin). In
the “agnostic” setting (i.e., when no such perfect half-space function is assumed to
exist), it possible to show that the expected error of OTBA is at most the optimal
hinge-loss achieved by a half-space function specified by norm-bounded weight vectors,
plus a term that is roughly O(1/

√
n).

Computationally, Algorithm 1 can be quite attractive if the online prediction
algorithm has constant time updates and has a constant memory requirements (with
respect to n). Perceptron and Winnow certainly fit this bill. In these cases, the
running time scales linearly with n. In fact, the algorithm only needs streaming access
to the data.

One drawback of Algorithm 1 is that its final classifier is a randomized classifier: it
randomly picks among the n+1 classifiers generated by the online prediction algorithm,
and uses the chosen classifier to predict. However, the randomized classifier can be
derandomized by using a majority vote over the n+ 1 classifiers. The prediction error
of the majority-vote classifier is at most twice the prediction error of the randomized
classifier.

Some online prediction algorithms such as Perceptron and Winnow don’t update
their weight vectors unless a mistake is made, and thus there may actually be fewer
than n + 1 different classifiers. In such cases, it can be more efficient to represent
the final randomized (or majority-vote) classifier as a weighted combination of these
different classifiers. The weight is proportional to the number of rounds in which it is
used by the online prediction algorithm—specifically, one plus the number of examples
on which it predicts correctly.

In the case of half-space functions, it is reasonable to use a (weighted) average of
the weight vectors corresponding to the different classifiers. This can be thought of
as an approximation to the majority-vote classifier. In some cases, averaging can be
rigorously justified and in fact shown to at least as good as the randomized classifier.

3 Progressive validation

Another significant advantage of using online prediction algorithms for batch learning
is that one can estimate the prediction error of the learned classifier very accurately,
without the need for a separate held-out test set. This technique is called progressive
validation.

3



To motivate progressive validation, we first review how validation is often performed
in batch learning. Suppose n labeled examples S1:n := ((x1, y1), (x2, y2), . . . , (xn, yn))

are available. These examples are split into two groups: the first n −m examples
S1:n−m and the final m examples Sn−m+1:n. The first n−m examples S1:n−m are given
to a batch learning algorithm B to learn a classifier f̂ := B(S1:n−m). The last m
examples Sn−m+1:n are used to compute the test error of f̂ :

êrrtest(f̂) :=
1

m

m∑
t=n−m+1

1{f̂(xt)6=yt}.

Under the assumption that the original n examples are drawn i.i.d. from some fixed
distribution P, the test error êrrtest(f̂) is an unbiased estimator of the prediction error
of f̂ :

E
(
êrrtest(f̂)

)
= err(f̂).

Note that this is not true of the training error of f̂ :

êrrtrain(f̂) :=
1

n−m

n−m∑
t=1

1{f̂(xt)6=yt}.

Indeed, f̂ is generally not independent of S1:n−m because those examples are used by
the batch learning algorithm to produce f̂ . However, the last m examples Sn−m+1:n

are independent of f̂ , so
E
(
1{f̂(xt) 6=yt}

)
= err(f̂)

for n−m+ 1 ≤ t ≤ n, and hence E(êrrtest(f̂)) = err(f̂). The following proposition is
a standard application of standard binomial tail bounds (e.g., Hoeffding’s inequality).
It can be improved considerably, although we shall not discuss it here because the
same improvements will also apply to the approach we discuss next.

Proposition 1. Let f̂ := B(S1:n−m) for any batch learning algorithm B. For any
δ ∈ (0, 1),

Pr

(
err(f̂) ≤ êrrtest(f̂) +

√
ln(1/δ)

2m

)
≥ 1− δ

where the probability is taken with respect to Sn−m+1:n.

Progressive validation provides a way to (essentially) use all n data for both
training and testing, as long as the training is done using the online-to-batch procedure
OTBA with some online prediction algorithm A. Let f̂ := OTBA(S1:n−1) be the final
randomized classifier produced by OTBA using the first n− 1 examples. That is, f̂

4



is the randomized classifier that picks one of f1, f2, . . . , fn uniformly at random and
uses the chosen classifier to predict. The estimator for the prediction error of f̂ is

êrrpv(f̂) :=
1

n

n∑
t=1

1{ft(xt)6=yt}

i.e., the number of mistakes made by A on S1:n, divided by n.

Proposition 2. Let f̂ := OTBA(S1:n−1). For any δ ∈ (0, 1),

Pr

(
err(f̂) ≤ êrrpv(f̂) +

√
ln(1/δ)

2n

)
≥ 1− δ

where the probability is taken with respect to S1:n.

Proof. For each t = 1, 2, . . . , n, define Zt := err(ft) − 1{ft(xt)6=yt}. Since ft only
depends on S1:t−1, it follows that E(Zt |S1:t−1) = 0. Furthermore, Zt ≤ 1. Therefore
Z1, Z2, . . . , Zn is a martingale difference sequence. By the Azuma-Hoeffding inequality,
for any ε > 0

Pr

(
1

n

n∑
t=1

Zt >
ε

n

)
≤ exp

(
−2ε2/n

)
.

The probability bound is equal to δ when ε :=
√
n ln(1/δ)/2. Therefore, with

probability at least 1− δ,

1

n

n∑
t=1

err(ft)− êrrpv(f̂) =
1

n

n∑
t=1

(
err(ft)− 1{ft(xt)6=yt}

)
≤
√

ln(1/δ)

2n
.

The conclusion follows because the randomized classifier f̂ has prediction error err(f̂) =∑n
t=1 err(ft)/n.

Thus, while Proposition 2 lacks the generality of Proposition 1, it compensates
by allowing the training procedure OTBA to use n − 1 examples and providing an
estimator of the prediction error that deviates by no more than O(1/

√
n) with high

probability.

Bibliographic notes

The online-to-batch conversion for expected prediction error is due to Helmbold
and Warmuth [3], and the deterministic (majority-vote and averaging) variants were
proposed for use with Perceptron by Freund and Schapire [2]. The progressive
validation technique was proposed by Blum et al. [1].

5



References

[1] A. Blum, A. Kalai, and J. Langford. Beating the hold-out: Bounds for K-fold and
progressive cross-validation. In Proceedings of the Twelfth Annual Conference on
Computational Learning Theory, pages 203–208, 1999.

[2] Y. Freund and R. E. Schapire. Large margin classification using the perceptron
algorithm. Machine Learning, 37(3):277–296, 1999.

[3] D. P. Helmbold and M. K. Warmuth. On weak learning. Journal of Computer
and System Sciences, 50:551–573, 1995.

6


	Introduction
	Expected prediction error vs mistake bounds
	Progressive validation

