
COMS 4771
Correlation analysis (SVD/PCA)

Singular value decomposition (SVD)

• Perhaps the most important matrix decomposition / factorization
• Many applications in all areas of science, engineering, etc.

• Solve best fitting subspace problem
• Principal components analysis (PCA)
• Interpret/understand linear transformations
• Construct low-rank matrix approximations
• Many others in domain-specific contexts

• Graphics & molecular biology/chemistry: optimal rotation to align point sets
• Information retrieval: recommender systems
• Social sciences: discover close-knit communities in networks
• Statistics/applied math: solve ill-posed linear inverse problems

2

1. Best fitting subspaces

3

Example from psychometrics

…

-2 -1 0 +1 +2
International

Personality Items

4

High-dimensional data from psychometrics

• Response vector for subject 𝑖:

𝑎⃗! = 0,−2,+2,−1,0, +1,−2,−1,−2,+2,0, −1,+1,… ∈ ℝ"

One value per "International Personality Item" (𝑑 = 3320)
• Hypothesis: a few underlying "personality traits" can explain

variability in responses of subjects
• E.g., "Big Five": openness to experience, conscientiousness, extraversion,

agreeableness, neuroticism
• Linear algebraic hypothesis: subjects' responses 𝑎⃗#, … , 𝑎⃗$ are "close"

to a low-dimensional subspace of ℝ"

5

Best fitting subspace problem

• Input: Data 𝑎⃗#, … , 𝑎⃗$ ∈ ℝ" , target dimension 𝑘
• Goal: Find 𝑘-dim. subspace 𝑊 of ℝ" that is "closest" to the data

𝑎⃗!

𝑎⃗"

𝑎⃗#

𝑎⃗$

𝑎⃗%

𝑎⃗&

𝑎⃗'

𝑎⃗(

𝑎⃗)

𝕎

6

Quality measure

• Distance of 𝑎⃗! to subspace 𝑊 given by

𝑎⃗! − 𝑃%𝑎⃗!

(In this lecture, always use 𝑃% to denote orthoprojector for 𝑊)
• There are 𝑛 "distances" that we want to be small, one per data point
• Our choice of quality measure: sum of squares

cost 𝑊 = 𝑎⃗# − 𝑃%𝑎⃗# & +⋯+ 𝑎⃗$ − 𝑃%𝑎⃗$ &

7

Best fitting subspace problem (again)

• Input: Data 𝑎⃗#, … , 𝑎⃗$ ∈ ℝ" , target dimension 𝑘
• Goal: Find 𝑘-dim. subspace 𝑊 of ℝ" of smallest cost(𝑊)

𝑎⃗!

𝑎⃗"

𝑎⃗#

𝑎⃗$

𝑎⃗%

𝑎⃗&

𝑎⃗'

𝑎⃗(

𝑎⃗)

𝕎

8

Looking ahead: Solving 𝑘-BFS yields the SVD

1. There is a simple algorithm for 𝑘-dim. Best Fitting Subspace (𝑘-BFS)
• Greedy algorithm: Repeatedly solve a Best Fitting Line problem

2. Solving 𝑘-BFS for all 𝑘 provides a decomposition of data matrix

𝐴 =
← 𝑎⃗!" →

⋮
← 𝑎⃗#" →

= 𝜎!𝑢!𝑣⃗!" +⋯+ 𝜎$𝑢$𝑣⃗$"

where
• 𝑟 is rank of 𝐴
• 𝑢!, … , 𝑢" is ONB for CS(𝐴) (called left singular vectors of 𝐴)
• 𝑣⃗!, … , 𝑣⃗" is ONB for CS 𝐴# (called right singular vectors of 𝐴)
• 𝜎!, … , 𝜎" > 0 (called singular values of 𝐴)

Singular Value Decomposition (SVD) of 𝐴

9

Reformulating cost

• Pythagorean identity: For any subspace 𝑊 and vector 𝑣⃗

𝑣⃗ & = 𝑃%𝑣⃗ & + 𝑣⃗ − 𝑃%𝑣⃗ &

• Therefore:

cost 𝑊 = 𝑎⃗# & +⋯+ 𝑎⃗$ & − 𝑃%𝑎⃗# & +⋯+ 𝑃%𝑎⃗$ &

'()* %

10

Reformulating gain

• Identify 𝑘-dim. subspace 𝑊 with Orthonormal Basis (ONB)
𝑞⃗#, … , 𝑞⃗+ for 𝑊:

gain 𝑞⃗#, … , 𝑞⃗+ =A
!,#

$

𝑃%𝑎⃗! & =A
!,#

$

A
-,#

+

𝑎⃗! , 𝑞⃗-
& =A

-,#

+

A
!,#

$

𝑎⃗! , 𝑞⃗-
&

'()* .!

(by Parseval's identity)

11

Best fitting subspace problem (yet again)

• Input: Data 𝑎⃗#, … , 𝑎⃗$ ∈ ℝ" , target dimension 𝑘
• Goal: Find ONB 𝑞⃗#, … , 𝑞⃗+ of highest gain 𝑞⃗# +⋯+ gain 𝑞⃗+

𝑎⃗!

𝑎⃗"

𝑎⃗#

𝑎⃗$

𝑎⃗%

𝑎⃗&

𝑎⃗'

𝑎⃗(

𝑎⃗)

𝕎 = span(𝑞⃗!, … , 𝑞⃗*)

12

Greedy algorithm for 𝑘-BFS

• Input: Data 𝑎⃗#, … , 𝑎⃗$ ∈ ℝ" , target dimension 𝑘
• For 𝑗 = 1,2, … , 𝑘 do

• 𝑆./0 = span 𝑣⃗0, … , 𝑣⃗./0
• Let 𝑣⃗. be unit vector 𝑥⃗ ∈ 𝑆./01 of highest gain 𝑥⃗ (★)

• Return ONB 𝑣⃗#, … , 𝑣⃗+ for 𝑆+ = span 𝑣⃗#, … , 𝑣⃗+

13

Sample run of 2-BFS greedy algorithm

• Data (𝑛 = 4 data points in ℝ" for 𝑑 = 4)

𝐴 =

← 𝑎⃗#/ →
← 𝑎⃗&/ →
← 𝑎⃗0/ →
← 𝑎⃗1/ →

=

+3 +1 +2 +0
−1 −3 +0 −2
+0 +2 +1 +3
−2 +0 −3 −1

• Step 𝑗 = 1
𝑆2 = 0 , 𝑆23 = ℝ1, 𝑣⃗# =

1
2
,
1
2
,
1
2
,
1
2

achieves gain 𝑣⃗# = 3& + −3 & + 3& + −3 & = 36

14

Sample run of 2-BFS greedy algorithm (2)

• Data (𝑛 = 4 data points in ℝ" for 𝑑 = 4)

𝐴 =

← 𝑎⃗#/ →
← 𝑎⃗&/ →
← 𝑎⃗0/ →
← 𝑎⃗1/ →

=

+3 +1 +2 +0
−1 −3 +0 −2
+0 +2 +1 +3
−2 +0 −3 −1

• Step 𝑗 = 2
𝑆# = span(𝑣⃗#), 𝑆#3 = NS 𝑣⃗#/ , 𝑣⃗& =

1
2
,−
1
2
,
1
2
, −
1
2

achieves gain 𝑣⃗& = 2& + 2& + −2 & + −2 & = 16

15

Best fitting line (★)

• Step 𝑗 of 𝑘-BFS greedy algorithm: Solve "Best Fitting Line" problem
restricted to orthogonal complement of 𝑆-4# = span(𝑣⃗#, … , 𝑣⃗-4#)

-6 -4 -2 0 2 4 6

-3

-2

-1

0

1

2

3

16

Optimality of 𝑘-BFS greedy algorithm

Theorem: Consider any dataset 𝑎⃗#, … , 𝑎⃗$ and any 𝑘
1. 𝑘-BFS greedy algorithm finds 𝑘-dim. subspace 𝑆+ such that

gain 𝑆+ ≥ gain 𝑊

for all 𝑘-dim. subspaces 𝑊

2. Non-negative values 𝜎- = gain 𝑣⃗- satisfy

𝜎# ≥ 𝜎& ≥ ⋯ ≥ 𝜎+

17

More properties of 𝑘-BFS greedy algorithm

Theorem: Let 𝐴 be 𝑛	×	𝑑 matrix with rows 𝑎⃗#/, … , 𝑎⃗$/; let 𝑟 = rank 𝐴
1. 𝑆5 = span 𝑎⃗#, … , 𝑎⃗$ = CS 𝐴/

2. 𝜎- = 𝐴𝑣⃗- > 0 for all 𝑗 ∈ 1,… , 𝑟
3. cost 𝑆+ = 𝜎+6#& +⋯+ 𝜎5&

4. If 𝑢- =
#
7"
𝐴𝑣⃗- for 𝑗 ∈ 1,… , 𝑟 , then

𝐴 = 𝜎#𝑢#𝑣⃗#/ +⋯+ 𝜎5𝑢5𝑣⃗5/

and 𝑢#, … , 𝑢5 are orthonormal

18

MNISTMNIST

original k = 25 k = 50 k = 75 k = 100

23 / 27

19

Population structure within Europe

J Novembre et al. Nature 000, 1-4 (2008) doi:10.1038/nature07331

n = 1387 individuals
d = 197146 single nucleotide polymorphisms

20

2. Singular value decomposition

21

SVD existence theorem

SVD theorem: For any 𝑛×𝑑 matrix 𝐴 of rank 𝑟, there exist
• ONB 𝑢0, … , 𝑢2 for CS(𝐴) (called left singular vectors of 𝐴),
• ONB 𝑣⃗0, … , 𝑣⃗2 for CS 𝐴3 (called right singular vectors of 𝐴),
• positive numbers 𝜎0 ≥ ⋯ ≥ 𝜎2 > 0 (called singular values of 𝐴)

such that
𝐴 = 𝜎#𝑢#𝑣⃗#/ +⋯+ 𝜎5𝑢5𝑣⃗5/

This decomposition is called a singular value decomposition (SVD) of 𝐴
Proof: By construction, using 𝑘-BFS greedy algorithm

22

SVD as matrix factorization

• Compact SVD: Given SVD 𝐴 = 𝜎!𝑢!𝑣⃗!" +⋯+ 𝜎$𝑢$𝑣⃗$", can write

𝐴 = 𝑈Σ𝑉"

where

𝑈 =
↑ ↑
𝑢! ⋯ 𝑢$
↓ ↓

, Σ =
𝜎!

⋱
𝜎$

, 𝑉 =
↑ ↑
𝑣⃗! ⋯ 𝑣⃗$
↓ ↓

• Notice that 𝑈"𝑈 = 𝐼#, 𝑉"𝑉 = 𝐼%, and Σ is invertible 𝑟	×	𝑟 diagonal matrix
• See reading for description of "Full SVD" variant
• Compact SVD of transpose is 𝐴" = 𝑉Σ𝑈"

23

SVD in NumPy

numpy.linalg.svd
• External call to _gesdd from LAPACK ("Linear Algebra Package")
• Pay attention to the options (e.g., full_matrices)
• Time complexity: 𝑂 𝑛𝑑min 𝑛, 𝑑

24

3. Covariance matrices and PCA

25

Multivariate data

• Data points 𝑎⃗#, … , 𝑎⃗$ ∈ ℝ" , e.g.,

𝑎⃗! = 0,−2,+2,−1,0, +1,−2,−1,−2,+2,0, −1,+1,… ∈ ℝ"
• Each 𝑎⃗4 contains 𝑑 measurements (a.k.a. "variables" or "feature" values)

• It is typical to center the data: subtract the mean vector

𝜇⃗ =
1
𝑛
A
!,#

$

𝑎⃗!

from each data point 𝑎⃗!

26

Covariance matrix

• If data points 𝑎⃗#, … , 𝑎⃗$ ∈ ℝ" are already centered, then their
(empirical) covariance matrix is the 𝑛	×	𝑑 matrix

𝐶 =
1
𝑛
A
!,#

$

𝑎⃗!𝑎⃗!/

• The (𝑖, 𝑗)th component of 𝐶 is the (empirical) covariance between the
𝑖th "feature" and the 𝑗th "feature"
• 𝐶4,4 is the variance of the 𝑖th "feature"

• If data points are stacked as rows in 𝑛	×	𝑑 matrix 𝐴, then 𝐶 = #
$
𝐴/𝐴

27

Principal components analysis

• Principal components analysis (PCA): linearly transform (centered)
data 𝑎⃗#, … , 𝑎⃗$ ∈ ℝ" by an 𝑑	×	𝑟 matrix 𝑄

𝑏! = 𝑄/𝑎⃗!
so that "features" in new data set 𝑏#, … , 𝑏$ are
• Uncorrelated (zero covariance between different features)
• Ordered so that variance is non-increasing (e.g., feature 1 has highest

variance, feature 2 has next highest variance, …)

• Desired matrix 𝑄 is given by right singular vectors of 𝐴, with order
given by corresponding singular values of 𝐴 (from largest to smallest)
• Variances are the squares of the singular values of 𝐴 (divided by 𝑛)

28

Eigenvectors and eigenvalues

PCA usually defined by eigenvectors of covariance matrix 𝐶 = #
$
𝐴/𝐴

If SVD factorization of 𝐴 is 𝐴 = 𝑈Σ𝑉/, then matrix 𝑉 diagonalizes 𝐶:

𝑉/𝐶𝑉 =
1
𝑛
Σ&

• Eigenvectors of 𝐶 are right singular vectors of 𝐴
• Eigenvalues of 𝐶 are squared singular values of 𝐴 (divided by 𝑛)
• 𝑗th largest eigenvalue of 𝐶 is variance of the data set in direction 𝑣⃗.

29

Bivariate normal distribution

• Example: (infinitely many) data
from bivariate normal distribution

N 0, 10/9 2/3
2/3 10/9

• (Population) covariance matrix has
eigenvalues/eigenvectors

𝜆# =
16
9
, 𝑣⃗# =

1
2
1
1 ,

𝜆& =
4
9
, 𝑣⃗& =

1
2
−1
1

30

MNIST

• Example: MNIST (just the 8's), 𝑛 = 6000, 𝑑 = 784
• 10 images sorted by 𝑥⃗3𝑣⃗0

31

Dimension reduction with PCA

• PCA transformation: Linear map 𝑉/: ℝ" → ℝ5, where 𝑉 ∈ ℝ"×5 is
matrix of right singular vectors of centered data matrix 𝐴 ∈ ℝ$×"
(ordered by corresponding singular values, from largest to smallest)
• To reduce to dimension 𝑘, just keep first 𝑘 entries of each

transformed vector
𝑏 = 𝑏#, … , 𝑏+ , 𝑏+6#, … , 𝑏5 = 𝑉/𝑎⃗

• Same as using only first 𝑘 right singular vectors in 𝑉

32

Dimension reduction of MNIST

• Variance Accounted For:

VAF =
∑!,#+ ivar 𝑏!
∑!,#
" ivar 𝑎!

• Axis-aligned: 𝑏 = 𝑎⃗,
ordered by var 𝑏4 (largest to smallest)

• PCA: 𝑏 = 𝑉3𝑎⃗

33

4. Power method

34

Best fitting line (★)

• Step 𝑗 of 𝑘-BFS greedy algorithm: Solve "Best Fitting Line" problem
restricted to orthogonal complement of 𝑆-4# = span(𝑣⃗#, … , 𝑣⃗-4#)

-6 -4 -2 0 2 4 6

-3

-2

-1

0

1

2

3

35

Powers of a positive semidefinite matrix

• If SVD factorization of 𝐴 is 𝐴 = 𝑈Σ𝑉/, then 𝑉 diagonalizes 𝐴/𝐴:
𝑉/ 𝐴/𝐴 𝑉 = Σ&

• 𝑉 also diagonalizes 𝐴/𝐴 &:
𝑉/ 𝐴/𝐴 &𝑉 = Σ1

• 𝑉 also diagonalizes 𝐴/𝐴 0:
𝑉/ 𝐴/𝐴 0𝑉 = Σ9

• …
• So, for any 𝑡:

𝐴/𝐴 : = 𝜎#&:𝑣⃗#𝑣⃗#/ + 𝜎&&:𝑣⃗&𝑣⃗&/ +⋯+ 𝜎5&:𝑣⃗5𝑣⃗5/

36

Powers of 𝐴!𝐴

𝐴 = 1/ 2 1/ 2
1 −1

37

𝑡 = 0

Powers of 𝐴!𝐴

𝐴 = 1/ 2 1/ 2
1 −1

38

𝑡 = 1

Powers of 𝐴!𝐴

𝐴 = 1/ 2 1/ 2
1 −1

39

𝑡 = 2

Powers of 𝐴!𝐴

𝐴 = 1/ 2 1/ 2
1 −1

40

𝑡 = 3

Powers of 𝐴!𝐴

𝐴 = 1/ 2 1/ 2
1 −1

41

𝑡 = 4

Multiplying powers of 𝐴'𝐴 by a vector

• For any 𝑡:

𝐴/𝐴 : = 𝜎#&:
𝜎#
𝜎#

&:
𝑣⃗#𝑣⃗#/ +

𝜎&
𝜎#

&:
𝑣⃗&𝑣⃗&/ +⋯+

𝜎5
𝜎#

&:
𝑣⃗5𝑣⃗5/

• If 𝜎# > 𝜎&, then for any 𝑥⃗ ∈ ℝ" s.t. 𝑥⃗ ⋅ 𝑣⃗# ≠ 0 and large enough 𝑡,

𝐴/𝐴 :𝑥⃗ ≈ (𝑥⃗ ⋅ 𝑣⃗#)𝜎#&:𝑣⃗#
• If 𝜎0 = ⋯ = 𝜎; > 𝜎;<0, and 𝑥⃗ not orthogonal to span 𝑣⃗0, … , 𝑣⃗; 	, then get

vector (approximately) in span of 𝑣⃗0, … , 𝑣⃗; (all such vectors are equally good!)

• Also: can compute 𝐴/𝐴 :𝑥⃗ iteratively

42

Power method

• Input: 𝑛	×	𝑑 matrix 𝐴
• Randomly pick a 𝑑-dimensional unit vector 𝑥⃗
• For 𝑗	 = 	1,2, … , 𝑡 do

• 𝑥⃗ = 0
=!= >⃗

𝐴3𝐴 𝑥⃗

• Return 𝑥⃗

43

Use in 𝑘-BFS greedy algorithm

• Step 𝑗 of 𝑘-BFS greedy algorithm: Solve "Best Fitting Line" problem
restricted to orthogonal complement of 𝑆-4# = span(𝑣⃗#, … , 𝑣⃗-4#)
• Q: How to ensure we restrict to 𝑆-4#3 	?
• A: Run power method on data 𝑃%𝑎⃗#, … , 𝑃%𝑎⃗$ for 𝑊 = 𝑆-4#3

• Then every 𝑣⃗ ∈ 𝑆./0 has 𝑣⃗, 𝑃?𝑎⃗4 = 0 for all 𝑖

44

Use in implementations

• LAPACK implementation of SVD does not use power method
• However, main idea of power method is used in "big data" settings

when, e.g., cannot even load 𝐴 into memory

45

5. Low-rank approximations

46

Low-rank matrix approximation

• Problem: Given 𝑛	×	𝑑 matrix 𝐴 and non-negative integer 𝑘, find a
𝑛	×	𝑑 matrix 𝐵 of rank 𝑘 so that

A
!,#

$

A
-,#

"

𝐴!,- − 𝐵!,-
&

is as small as possible.
• Motivation: Rank 𝑘 matrix can be represented using 𝑛 + 𝑑 𝑘

numbers (whereas a 𝑛	×	𝑑 matrix requires 𝑛𝑑 numbers)
• Space savings if 𝑘 < 𝑛𝑑/(𝑛 + 𝑑)

47

Truncated SVD

• Rank-𝑘 truncated SVD of 𝑛	×	𝑑 matrix 𝐴 of rank 𝑟 (for 𝑘 ≤ 𝑟):

r𝐴 = 𝜎#𝑢#𝑣⃗#/ +⋯+ 𝜎+𝑢+𝑣⃗+/
• Drop the 𝑟 − 𝑘 terms in SVD corresponding to 𝑟 − 𝑘 smallest singular values
• Matrix L𝐴 also called the rank-𝑘 SVD approximation of 𝐴

48

Eckart-Young Theorem

• Eckart-Young Theorem: For any 𝑛	×	𝑑 matrix 𝐴 of rank 𝑟, any 𝑘 ≤ 𝑟,
and any 𝑛	×	𝑑 matrix 𝐵 of rank 𝑘,

A
!,#

$

A
-,#

"

𝐴!,- − 𝐵!,-
&
≥A

!,#

$

A
-,#

"

𝐴!,- − r𝐴!,-
&
= 𝜎+6#& +⋯+ 𝜎5&

where r𝐴 is rank-𝑘 SVD approximation of 𝐴, and 𝜎# ≥ ⋯ ≥ 𝜎5 are the
singular values of 𝐴
• This is a corollary of the 𝑘-BFS greedy algorithm's guarantees

49

Reconstruction error of @𝐴

Example: image compression

510x640 pixel image: 3 separate 510×640 matrices, one per RGB color

50

Rank 8 SVD approximations

• Replace each matrix by rank 8 SVD approximation

51

Rank 16 SVD approximations

• Replace each matrix by rank 16 SVD approximation

52

Rank 32 SVD approximations

• Replace each matrix by rank 32 SVD approximation

53

Rank 64 SVD approximations

• Replace each matrix by rank 64 SVD approximation

54

Statistical application

• Consider the following statistical model: 𝐴 is 𝑛	×	𝑑 matrix of
independent random variables, where

𝐴!,- ∼ N 𝐻!,- , 𝜎&
• Here, 𝐻 is a 𝑛	×	𝑑 matrix of rank 𝑘, regarded as the model parameter

• Maximum likelihood estimator for 𝐻: rank-𝑘 SVD approx. of 𝐴
• Intuitive interpretation: truncated SVD attempts to remove the noise

55

6. Moore-Penrose pseudoinverse

56

Interpretation provided by SVD

• SVD factorization of 𝐴:
𝐴 = 𝑈Σ𝑉/

• Interpretation: for 𝑥⃗ ∈ CS(𝐴/),
• 𝛼⃗ = 𝑉3𝑥⃗: coordinates of 𝑥⃗ in 𝑉-basis
• 𝛽 = Σ𝛼⃗: Scale each coordinate according to diagonal entries of Σ
• Interpret 𝛽 as coordinates in 𝑈-basis, and return vector 𝑈𝛽

57

Moore-Penrose pseudoinverse

• For 𝐴 = 𝜎#𝑢#𝑣⃗#/ +⋯+ 𝜎5𝑢5𝑣⃗5/, Moore-Penrose pseudoinverse is

𝐴< = 𝑉Σ4#𝑈/

• Interpretation: for 𝑥⃗ ∈ CS(𝐴),
• 𝛽 = 𝑈3𝑥⃗: coordinates of 𝑥⃗ in 𝑈-basis
• 𝛼⃗ = Σ/0𝛽: Scale each coordinate according to diagonal entries of Σ/0
• Interpret 𝛼⃗ as coordinates in 𝑉-basis, and return vector 𝑉𝛼⃗

• Useful fact #1: Fundamental subspaces of 𝐴< are same as that of 𝐴/

• Useful fact #2: When restricting attention to CS 𝐴/ and CS(𝐴), the
linear maps 𝐴 and 𝐴< are inverses of each other (in the usual sense)

58

CS(AT)

NS(A)

x = y + z

y

z

0

Ax

CS(A)

NS(AT)

0
Rd

Rn

y →↑ Ay

x →↑ Ax

z →↑ Az

Ax →↑ A†(Ax)

59

Relation to orthogonal projections

• Useful fact #3:
𝐴𝐴< = 𝑈Σ𝑉/𝑉Σ4#𝑈/ = 𝑈𝑈/ = 𝑃=> ?

• Write 𝑏 ∈ ℝ$ as 𝑏 = 𝑏‖ + 𝑏3 for 𝑏‖ ∈ CS(𝐴) and 𝑏3 ∈ NS 𝐴/

• Recall NS 𝐴/ = NS(𝐴<)
• Then 𝐴<𝑏 = 𝐴< 𝑏‖ + 𝑏3 = 𝐴<𝑏‖
• So 𝐴<𝑏 is unique 𝑦⃗ ∈ CS 𝐴/ such that 𝐴𝑦⃗ = 𝑏‖
• Conclusion: 𝐴𝐴<𝑏 = 𝑏‖

60

Application: solving normal equations

• Normal equations:
𝐴/𝐴𝑤 = 𝐴/𝑏

• Solution in row space of 𝐴:
𝑤∗ = 𝐴<𝑏

• Why is 𝑤∗ a solution?
𝐴𝑤∗ = 𝐴𝐴<𝑏 = 𝑃=> ? 𝑏

• Fact: If 𝑤 ≠ 𝑤∗also solves the normal equations, then 𝑤 > 𝑤∗

• Can always make 𝑤 shorter by removing the part of 𝑤 in NS 𝐴
• There is only one solution to 𝐴𝑤 = 𝑃BC = 𝑏 in CS(𝐴3)

61

7. Latent semantic analysis

62

Document-term matrix

• 𝑛 documents in a corpus
• 𝑑 words in vocabulary
• Create 𝑛	×	𝑑 matrix 𝐴 of word counts per document

63

aardvark abacus abalone ⋯
Document 1 3 0 0 ⋯
Document 2 7 0 4 ⋯
Document 3 2 4 0 ⋯

⋮ ⋮ ⋮ ⋮ ⋱

Latent semantic analysis (LSA)

• Rank-𝑘 truncated SVD of 𝐴:

9𝐴 = :𝑈;Σ ;𝑉"
where

:𝑈 =
↑ ↑
𝑢! ⋯ 𝑢&
↓ ↓

, ;Σ =
𝜎!

⋱
𝜎&

, ;𝑉 =
↑ ↑
𝑣⃗! ⋯ 𝑣⃗&
↓ ↓

• Use 𝑖th row of :𝑈 ∈ ℝ#×& as representation of 𝑖th document
• Use 𝑗th column of ;Σ ;𝑉" ∈ ℝ&×% as representation of 𝑗th vocabulary word

64

Topic modeling with LSA

• Each row of 𝐴 is approximated by a linear combination of the 𝑘 rows
of xΣ x𝑉/ ∈ ℝ+×"
• Interpret each row of UΣ U𝑉3 as a representation of a "topic"
• 𝑖th row of V𝑈: "weights" that 𝑖th document puts each of the 𝑘 topics

• Alternatives to LSA (e.g., "Latent Dirichlet Allocation"):
• Also give low-rank approximations to 𝐴
• But also have probabilistic interpretations

65

Word embeddings

• Word embeddings: vector representations of vocabulary words
• Default ("one-hot") word embeddings:

• 𝑖th vocabulary word: 𝑒$ = (0,… , 0, ⏟1
$+,	&'()*)'+

, 0, … , 0)

• Geometry: all words are orthogonal to each other
• Word embeddings from LSA:

• Geometry: reflects co-occurrence statistics in documents
• Hope that truncated SVD removes corpus-specific "noise"

• Using word embeddings in machine learning:
• Get word embeddings (by LSA or other means) from a large corpus of documents

(not just the training data for "downstream" application)
• Represent words using the embeddings in data for downstream application

66

