COMS 4771
Correlation analysis (SVD/PCA)

Singular value decomposition (SVD)

* Perhaps the most important matrix decomposition / factorization

* Many applications in all areas of science, engineering, etc.
* Solve best fitting subspace problem
* Principal components analysis (PCA)

Interpret/understand linear transformations

Construct low-rank matrix approximations

Many others in domain-specific contexts
* Graphics & molecular biology/chemistry: optimal rotation to align point sets
* Information retrieval: recommender systems
* Social sciences: discover close-knit communities in networks
* Statistics/applied math: solve ill-posed linear inverse problems

1. Best fitting subspaces

Example from psychometrics

O 00 NNk W

—_
(=]

—
—

—
DB W

" understanding abstract ideas.

" people.

. Insult people.

. Pay attention to details.

. Worry about things.

. Have a vivid imagination.

. Very
International Inaccurate

Personality Iltems -2

Am the life of the party.

Feel little concern for others.
Am always prepared.

Get stressed out easily.

Have a rich vocabulary.
Don't talk a lot.

Am interested in people.
Leave my belongings
around.

Am relaxed most of the time.
Have difficulty

Feel comfortable around

CO00O0 O O O O OOO0OO0O0

Moderately
Inaccurate

-1

CO00O0 O O O O OOO0O0O0O0

Neither
Accurate
Nor
Inaccurate

0

CO00O0 O O O O OO0O0O0O0O0

Moderately
Accurate

+1

CO00O0 O O O O OO0O0O0O00

Very
Accurate

+2

CO0O0 O O O O O0O0OO0O0O0

High-dimensional data from psychometrics

* Response vector for subject i:
d; =(0,-2,+2,-1,0,+1,-2,—-1,—2,+2,0,—1,+1,...) € R4

One value per "International Personality Item" (d = 3320)

* Hypothesis: a underlying "personality traits" can explain
variability in responses of subjects

* E.g., "Big Five": openness to experience, conscientiousness, extraversion,
agreeableness, neuroticism

* Linear algebraic hypothesis: subjects' responses dy, ..., d,, are "close"
toa -dimensional subspace of R4

Best fitting subspace problem

* Input: Data dg, ..., d, € R%, target dimension k
* Goal: Find k-dim. subspace W of R? that is "closest" to the data

Quality measure

* Distance of a; to subspace W given by

-

lla; — Pyl

(In this lecture, always use Py, to denote orthoprojector for W)
* There are n "distances" that we want to be small, one per data point
* Our choice of quality measure: sum of squares

cost(W) = ”51 - PWC_i1||2 + ot ”C_in - PWC_in”2

Best fitting subspace problem (again)

* Input: Data dg, ..., d, € R%, target dimension k
* Goal: Find k-dim. subspace W of R? of smallest cost(W)

Looking ahead: Solving k-BFS yields the SVD

1. There is a simple algorithm for k-dim. Best Fitting Subspace (k-BFS)
* Greedy algorithm: Repeatedly solve a Best Fitting Line problem
2. Solving k-BFS for all k provides a decomposition of data matrix
aj
A= : = oy U V] + - + 0,1, T
C_i;lr Singular Value Decomposition (SVD) of A

where

* risrank of A

* (Uy, ..., U,) is ONB for CS(A; (called left singular vectors of A)
* (¥4, ...,V,) is ONB for CS(A") (called right singular vectors of A)
* 0q,...,0, >0 (called singular values of A)

Reformulating cost

* Pythagorean identity: For any subspace W and vector v

1911 = 1I1PwolI* + |1 — Py oI°

e Therefore:

cost(W) = |y lI? + -+ + lldnll* = (IPwaylI* + - + 1Py dn lI*)

gain(W)

10

Reformulating gain

* |dentify k-dim. subspace W with Orthonormal Basis (ONB)
(qq, -, qg) for W:
n k n
. - - - - > 2 > o 2
gain(y, .60 = Y IPw@ll? = > (@ d;)' = > > (@)
i=1 =1 j= =1

n
= i=1j=1 j=11

gain(ﬁj)

(by Parseval's identity)

Best fitting subspace problem (yet again)

* Input: Data dg, ..., d, € R%, target dimension k
* Goal: Find ONB (qy, ..., gy) of highest gain(g,) + -+ + gain(q,)

Greedy algorithm for k-BFS

* Input: Data dg, ..., d, € R, target dimension k
*Forj =1,2,..,kdo

. Sj—l = span({ﬁl, ...,1_7}'_1})

* Let ¥; be unit vector X € Sjl_l of highest gain(x)

* Return ONB (¥4, ..., Uy) for S, = span({vy, ..., U4 })

Sample run of 2-BFS greedy algorithm

* Data (n = 4 data points in R? for d = 4)

di 3 1 2 0
A @ |-t -3 0 -2
al 0 2 1 3
ar | b2 0 -3 -1

*Stepj =1

- 1111
So={0}, Sg=R* 131=()

2'2'2’°2
achieves gain(?,) = 32 + (—3)?2 + 32 + (—3)? = 36

()

Sample run of 2-BFS greedy algorithm (2)

* Data (n = 4 data points in R? for d = 4)

A=

* Stepj = 2

S, = span(v,),

d;
d,
d3

dy

S = NS(#[),

[3
-1
0

|—2

1 2 0]
-3 0 -2
2 1 3
0 -3 -1,

9_(1 11 1)
2=\ T2 T2

achieves gain(v,) = 22 + 22+ (=2)2 + (-2)? =16

Best fitting line ()

15

* Step j of k-BFS greedy algorithm: Solve "Best Fitting Line" problem
restricted to orthogonal complement of §;_; = span(vy, ..., 1'7’]-_1)

3
o %
1r
X
i X X
0 -
% 7
2t
3 . X . .
-6 -4 0 2 4 6

16

Optimality of k-BFS greedy algorithm

Theorem: Consider any dataset d,, ..., @, and any k
1. k-BFS greedy algorithm finds k-dim. subspace S}, such that

gain(Sy,) = gain(W)

for all k-dim. subspaces W

2. Non-negative values g; = /gain(ﬁj) satisfy

01 =0y 2+ 2 0y

More properties of k-BFS greedy algorithm

Theorem: Let A be n X d matrix with rows d;, ..., d, ; let r = rank(4)
1. S, = span({dy, ..., d,}) = CS(AT)

0; = ||A13j|| > 0 forallj €{1,..,r}

cost(Sy) = ofy 1 + - + 02

i1 = UijAﬁj forj € {1,...,7}, then

w N

a

A = 0-117113; + oo + O-rﬁrﬁn’:r

and Uy, ..., U, are orthonormal

MNIST

7 7 7 7 7
33 3 3 3
$ 8 5 § §

19

Population structure within Europe
\

n = 1387 individuals
‘ve d = 197146 single nucleotide polymorphisms

R

nature

o ‘ J Novembre et al. Nature 000, 1-4 (2008) doi:10.1038/natuie07331

2. Singular value decomposition

21

SVD existence theorem

SVD theorem: For any nXd matrix A of rank r, there exist
* ONB (g, ..., U,) for CS(A) (called left singular vectors of A),
* ONB (¥4, ...,) for CS(AT) (called right singular vectors of A),
* positive numbers g; = - = 0, > 0 (called singular values of A)

such that

This decomposition is called a singular value decomposition (SVD) of A
Proof: By construction, using k-BFS greedy algorithm

22

SVD as matrix factorization

 Compact SVD: Given SVD A = 04U, ¥; + -+ + 0,U, U, , can write

A=UzVT

01
ﬁl ﬂ)r], Yy = [], V =
Oy

* Noticethat UTU = I,, VTV = I, and X is invertible r X r diagonal matrix
* See reading for description of "Full SVD" variant
 Compact SVD of transposeis AT = VXUT

where

U =

SVD in NumPy

numpy.linalg.svd

 External call to _gesdd from LAPACK ("Linear Algebra Package")
* Pay attention to the options (e.g., full_matrices)

* Time complexity: O(nd min{n, d})

3. Covariance matrices and PCA

Multivariate data

* Data points dy, ..., d,, € R%, e.g.,

d; = (0,—-2,+2,—1,0,41,-2,—1,-2,42,0,—1,+1,...) € R4

* Each d; contains d measurements (a.k.a. "variables" or "feature" values)
* It is typical to center the data: subtract the mean vector

n
.
i=1

i =

S|k

from each data point d;

Covariance matrix

* If data points dy, ..., d,, € R are already centered, then their
(empirical) covariance matrix is the n X d matrix

* The (i, j)* component of C is the (empirical) covariance between the
ith "feature" and the jth "feature"

* C;; is the variance of the i*" "feature"”

. . . 1
* |If data points are stacked as rows in n X d matrix 4, then C = ;ATA

27

Principal components analysis

* Principal components analysis (PCA): linearly transform (centered)
data dy, ..., d,, € R% by an d X r matrix Q
B)i - Q_)TC_l)i .
so that "features" in new data set by, ..., b, are
* Uncorrelated (zero covariance between different features)
* Ordered so that variance is non-increasing (e.g., feature 1 has highest
variance, feature 2 has next highest variance, ...)

* Desired matrix Q is given by right singular vectors of A, with order
given by corresponding singular values of A (from largest to smallest)
* Variances are the squares of the singular values of A (divided by n)

28

Eigenvectors and eigenvalues

PCA usually defined by eigenvectors of covariance matrix C = %ATA
If SVD factorization of Ais A = UZV T, then matrix V diagonalizes C:

1
VTCy = -%2
n
* Eigenvectors of C are right singular vectors of A

* Eigenvalues of C are squared singular values of A (divided by n)
* jth largest eigenvalue of C is variance of the data set in direction 13]-

Bivariate normal distribution

2.0

* Example: (infinitely many) data 1o
from bivariate normal distribution o
N<O 10/9 2/3)
) 2/3 10/9 -1.01

* (Population) covariance matrix has ol

eigenvalues/eigenvectors 2o -
h _ 16 , 1 [1] 5]
| = (2 10’

4 - 1 - o} 0:0—
weg el ©/

-1.54

-2.0

MNIST

* Example: MNIST (just the 8's), n = 6000, d = 784

* 10 images sorted by ¥ ' ¥,

VPIBLE I E &S

31

Dimension reduction with PCA

* PCA transformation: Linear map V': R¢ — R”, where V € R**" s
matrix of right singular vectors of centered data matrix 4 € R**¢
(ordered by corresponding singular values, from largest to smallest)

* To reduce to dimension k, just keep of each
transformed vector
b =())=VTa

* Same as using only first k right singular vectors in IV

32

Dimension reduction of MNIST

* Variance Accounted For:
VAF = i=1 Var(h)

e Axis-aligned: b = @,
ordered by Var(bl-) (largest to smallest)

- PCA:b =VTd

4. Power method

=
o
.

variance accounted for

o
[N}

o
o
:

o
o
A

o
o
)

©
N

—— axis-aligned
— PCA

0

100 200 300 400 500 600 700 800

k

33

34

Best fitting line ()

* Step j of k-BFS greedy algorithm: Solve "Best Fitting Line" problem
restricted to orthogonal complement of S;_; = span(vy, ..., Uj_1)

3
X
2t : s
1t
0F g :
1F « .
y %
2t ¥ "
-3 X .
-6 4 2 0 2 4 6

35

Powers of a positive semidefinite matrix

* If SVD factorization of Ais A = UXVT, then V diagonalizes AT A:
VT(ATA) = 52

* V also diagonalizes (AT A4)?:
VT (ATA)?V = x4

* V also diagonalizes (AT A4)3:
VT(ATA)3V = 56

* So, forany t:
(ATA) = 62t 0, 0] + 02t 0,0, + -+ 620, 8]

36

Powers of ATA

A=[1/\/§ 1
1

Powers of ATA

A=[1/\/§ 1
1

/N2
—1

/N2
—1

X2

0.50 A

0.25 A

0.00 A

—0.25 A1

—0.50 1

—0.75 A1

—1.00 A

1.5 1

1.0 A

0.0 A

—0.5 1

—1.01

—1.541

Plot of (A T A)%x for all unit vectors x € R?

-1.00-0.75-0.50-0.25 0.00 0.25 0.50 0.75 1.00
X1

t=20

Plot of (A T A)lx for all unit vectors x € R?

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5
X1

t=1

37

38

Plot of (A T A)2x for all unit vectors x € R?

Powers of ATA 8

A=[1/x/§ 1/V2 !
1 ~1 3

X2
o

39

Plot of (A T A)3x for all unit vectors x € R?

Powers of ATA 8

A=[1/x/§ 1/V2 :
1 ~1 :

X2
o

40

Plot of (A T A)*x for all unit vectors x € R?

Powers of ATA

A= [1/\/5 1/V2
1 ~1

—-10 1

41

Multiplying powers of AT A by a vector

* Forany t:
a\2E o2 o2
= (2) oo+ (2) a7 o (2) 57
01 01 01
* If 0, > 0,, then forany ¥ € R% s.t. ¥ - ¥; # 0 and large enough ¢,
(ATA'X = (X - U)ottty

* If 6y = -+ = 6, > 0p441, and X not orthogonal to span{?y, ..., %, } , then get
vector (approximately) in span of ¥, ..., ﬁp (all such vectors are equally good!)

* Also: can compute (AT A)tX iteratively

42

Power method

* Input: n X d matrix A
» Randomly pick a d-dimensional unit vector X
*Forj = 1,2,...,tdo

. 4 — 1 T -
X = amam A Ax

e Return x

Use in k-BFS greedy algorithm

* Step j of k-BFS greedy algorithm: Solve "Best Fitting Line" problem
restricted to orthogonal complement of §;_; = span(vy, ..., 1'7’]-_1)

* Q: How to ensure we restrict to Sjl_l ?

* A: Run power method on data Py dy, ..., Py d,, for W = Sjl_l
* Then every v € Sj_; has (¥, Py d;) = 0 forall i

Use in implementations

* LAPACK implementation of SVD does not use power method

* However, main idea of power method is used in "big data" settings
when, e.g., cannot even load A into memory

5. Low-rank approximations

Low-rank matrix approximation

* Problem: Given n X d matrix A and non-negative integer k, find a
n X d matrix B of rank k so 'Uclhat

Z”: Z(Ai,j —B;;)”

i=1j=1
is as small as possible.

* Motivation: Rank k matrix can be represented using (n + d)k
numbers (whereas a n X d matrix requires nd numbers)

* Space savingsifk <nd/(n+ d)

a7

Truncated SVD

* Rank-k truncated SVD of n X d matrix A of rank r (for k < r):

~

A - O-lﬁlﬁir + -+ O-kﬁkﬁll_
* Drop the r — k terms in SVD corresponding to r — k smallest singular values
* Matrix 4 also called the rank-k SVD approximation of A

48

Eckart-Young Theorem

* Eckart-Young Theorem: For any n X d matrix A of rankr,any k <,
and any n X d matrix B of rank k,

d
2
Z(Ai,j ~ By))
=1

n
i=1j

Reconstruction error of A

where 4 is rank-k SVD approximation of 4, and g; = --- > g, are the
singular values of A

* This is a corollary of the k-BFS greedy algorithm's guarantees

49

Example: image compression

510x640 pixel image: 3 separate 510x640 matrices, one per RGB color

50

Rank 8 SVD approximations

* Replace each matrix by rank 8 SVD approximation

100

200

300

Rank 16 SVD approximations

* Replace each matrix by rank 16 SVD approximation

100

200

300

51

52

Rank 32 SVD approximations

* Replace each matrix by rank 32 SVD approximation

0

100 T E R E R E S B R RRET
R R R LT T S D YT

e e e e e .
)

. BB : 111

200

53

Rank 64 SVD approximations

* Replace each matrix by rank 64 SVD approximation

54

Statistical application

* Consider the following statistical model: 4 is n X d matrix of
independent random variables, where

Ai,j ~ N(Hi,j,O'z)
* Here, H is an X d matrix of rank k, regarded as the model parameter
* Maximum likelihood estimator for H: rank-k SVD approx. of A

* Intuitive interpretation: truncated SVD attempts to remove the noise

6. Moore-Penrose pseudoinverse

Interpretation provided by SVD

e SVD factorization of A:
A=UxVT

* Interpretation: for X € CS(A"),
« a = VTX: coordinates of ¥ in V-basis
. E = Ya: Scale each coordinate according to diagonal entries of &
* Interpret E as coordinates in U-basis, and return vector Uﬁ

Moore-Penrose pseudoinverse

* For A = 0,U; ¥, + -+ 0,U, V], Moore-Penrose pseudoinverse is

At =vz-1yT
* Interpretation: for X € CS(A),
» § = UT%: coordinates of % in U-basis
cq = Z‘lﬁz Scale each coordinate according to diagonal entries of 21
* Interpret & as coordinates in V-basis, and return vector Va
« Useful fact #1: Fundamental subspaces of AT are same as that of AT

* Useful fact #2: When restricting attention to CS(AT) and CS(4), the
linear maps A and AT are inverses of each other (in the usual sense)

Relation to orthogonal projections

* Useful fact #3:
AAT = UTVTVETIUT = UUT = Pegpy

« Write b € R" as b = EII + I_9>l for EII € CS(4) and I_o)l € NS(AT)
« Recall NS(4T) = NS(4™)

* Then ATh = AT (b, + b,) = ATh,

« So ATb is unique ¥ € CS(AT) such that Ay = BII

« Conclusion: AATh = EII

Application: solving normal equations

* Normal equations:
ATAW = ATb
* Solution in row space of A:
w* = A'b
* Why is W* a solution?
AW* = AATD = Pegia)b
* Fact: If W #= w*also solves the normal equations, then ||w|| > ||[W*||
* Can always make W shorter by removing the part of w in NS(4)

* There is only one solution to Aw = PCS(A)E inCS(A™)

/. Latent semantic analysis

Document-term matrix

* n documents in a corpus
* d words in vocabulary
* Create n X d matrix A of word counts per document

[e | | 0

63

Latent semantic analysis (LSA)

e Rank-k truncated SVD of A:

* Use ith row of U € R™ ¥ as representation of it document
* Use jt column of 27T € R¥*4 as representation of jt" vocabulary word

64

Topic modeling with LSA

* Each row of A is approximated by a linear combination of the k rows
of VT € Rk*d
* Interpret each row of SV T as a representation of a "topic"
« ith row of U: "weights" that ith document puts each of the k topics

* Alternatives to LSA (e.g., "Latent Dirichlet Allocation"):
* Also give low-rank approximations to A
* But also have probabilistic interpretations

Word embeddings

* Word embeddings: vector representations of vocabulary words

 Default ("one-hot") word embeddings:
* it vocabulary word: ¢; = (0, ..., 0, 1 ,0,...,0)
ith p&Sition
* Geometry: all words are orthogonal to each other
* Word embeddings from LSA:
* Geometry: reflects co-occurrence statistics in documents
* Hope that truncated SVD removes corpus-specific "noise"

* Using word embeddings in machine learning:

* Get word embeddings (by LSA or other means) from a large corpus of documents
(not just the training data for "downstream" application)

* Represent words using the embeddings in data for downstream application

