Inductive bias and regularization

COMS 4771 Fall 2023

Minimum norm solutions

Normal equations $\left(A^{\top} A\right) w=A^{\top} b$ can have infinitely-many solutions

$$
\varphi(x)=\left(1, \cos (x), \sin (x), \frac{\cos (2 x)}{2}, \frac{\sin (2 x)}{2}, \ldots, \frac{\cos (32 x)}{32}, \frac{\sin (32 x)}{32}\right)
$$

Norm of w is a measure of "steepness"

$$
\underbrace{\left|w^{\top} \varphi(x)-w^{\top} \varphi\left(x^{\prime}\right)\right|}_{\text {change in output }} \leq\|w\| \times \underbrace{\left\|\varphi(x)-\varphi\left(x^{\prime}\right)\right\|}_{\text {change in input }}
$$

(Cauchy-Schwarz inequality)

- Note: Data does not provide a reason to prefer short w over long w
- Preference for short w is example of inductive bias (tie-breaking rule)

Ridge regression

$\underline{\text { Ridge regression: "balance" two concerns by minimizing }}$

$$
\|A w-b\|^{2}+\lambda\|w\|^{2}
$$

where $\lambda \geq 0$ is hyperparameter

- Concern 1: "data fitting term" $\|A w-b\|^{2}$ (involves training data)
- Concern 2: regularizer $\lambda\|w\|^{2}$ (doesn't involve training data)
- $\lambda=0$ corresponds to objective in OLS
- $\lambda \rightarrow 0^{+}$gives minimum norm solution

Example: $n=d=100,\left(\left(X^{(i)}, Y^{(i)}\right)\right)_{i=1}^{n} \stackrel{\text { i.i.d. }}{\sim}(X, Y)$, where $X \sim \mathrm{~N}(0, I)$, and conditional distribution of Y given $X=x$ is $\mathrm{N}\left(\sum_{j=1}^{10} x_{j}, 1\right)$

- Normal equations have unique solution, but OLS performs poorly

Different interpretation of ridge regression objective

$$
\begin{aligned}
& \|A w-b\|^{2}+\lambda\|w\|^{2} \\
= & \|A w-b\|^{2}+\|(\sqrt{\lambda} I) w-0\|^{2}
\end{aligned}
$$

- Second term is MSE on d additional "fake examples"

$$
\begin{aligned}
&\left(x^{(n+1)}, y^{(n+1)}\right)= \\
&\left(x^{(n+2)}, y^{(n+2)}\right)= \\
& \vdots \\
&\left(x^{(n+d)}, y^{(n+d)}\right)= \\
&
\end{aligned}
$$

"Augmented" dataset in matrix notation:

$$
\widetilde{A}=\left[\begin{array}{ccc}
\longleftarrow & \left(x^{(1)}\right)^{\top} & \longrightarrow \\
\vdots & \\
\longleftarrow & \left(x^{(n)}\right)^{\top} & \longrightarrow \\
\longleftarrow & \left(x^{(n+1)}\right)^{\top} & \longrightarrow \\
\vdots & \\
\longleftarrow & \left(x^{(n+d)}\right)^{\top} & \longrightarrow
\end{array}\right], \quad \tilde{b}=\left[\begin{array}{c}
y^{(1)} \\
\vdots \\
y^{(n)} \\
0 \\
\vdots \\
0
\end{array}\right]
$$

so

$$
\|A w-b\|^{2}+\lambda\|w\|^{2}=\|\widetilde{A} w-\tilde{b}\|^{2}
$$

What are "normal equations" for ridge regression objective (in terms of \widetilde{A}, \tilde{b})?

Other forms of regularization

Regularization using domain-specific data augmentation

Create "fake examples" from existing data by applying transformations that do not change appropriateness of corresponding label, e.g.,

- Image data: rotations, rescaling
- Audio data: change playback rate
- Text data: replace words with synonyms

Functional penalties (e.g., norm on w)

- Ridge: (squared) ℓ^{2} norm

$$
\|w\|^{2}
$$

- Lasso: ℓ^{1} norm

$$
\|w\|_{1}=\sum_{j=1}^{d}\left|w_{j}\right|
$$

- Sparse regularization: ℓ^{0} "norm" (not really a norm)

$$
\|w\|_{0}=\# \text { coefficients in } w \text { that are non-zero }
$$

Example: $n=d=100,\left(\left(X^{(i)}, Y^{(i)}\right)\right)_{i=1}^{n} \stackrel{\text { i.i.d. }}{\sim}(X, Y)$, where $X \sim \mathrm{~N}(0, I)$, and conditional distribution of Y given $X=x$ is $\mathrm{N}\left(\sum_{j=1}^{10} x_{j}, 1\right)$

- Minimize $\|A w-b\|^{2}+\lambda\|w\|_{1}$ (Lasso)

Weighted (squared) ℓ^{2} norm:

$$
\sum_{i=1}^{d} c_{i} w_{i}^{2}
$$

for some "costs" $c_{1}, \ldots, c_{d} \geq 0$

- Motivation: make it more "costly" (in regularizer) to use certain features
- Where do costs come from?

Example:

$$
\varphi(x)=(1, \cos (x), \sin (x), \cos (2 x), \sin (2 x), \ldots, \cos (32 x), \sin (32 x))
$$

with regularizer on $w=\left(w_{0}, w_{\cos , 1}, w_{\sin , 1}, \ldots, w_{\cos , 32}, w_{\sin , 32}\right)$

$$
w_{0}^{2}+\sum_{j=1}^{d} j^{2} \times\left(w_{\cos , j}^{2}+w_{\mathrm{sin}, j}^{2}\right)
$$

(More expensive to use "high frequency" features)

Question: Can effect of costs be achieved using (original) ridge regularization by changing φ ?

Margins and support vector machines

Many linear classifiers with same training error rate

Possible inductive bias: largest "margin", i.e., most "wiggle room"

For notational convenience, use $\mathcal{Y}=\{-1,1\}$ instead of $\mathcal{Y}=\{0,1\}$

- $f_{w, b}(x)=\operatorname{sign}\left(w^{\top} x+b\right)$
- $f_{w, b}(x)=y$ can be written as

$$
y\left(w^{\top} x+b\right)>0
$$

- If it is possible to satisfy

$$
y\left(w^{\top} x+b\right)>0 \quad \text { for all }(x, y) \in \mathcal{S},
$$

then can rescale w and b so that

$$
\min _{(x, y) \in \mathcal{S}} y\left(w^{\top} x+b\right)=1
$$

Say linear classifier $f_{w, b}$ achieves margin γ on example (x, y) if:

- $f_{w, b}(x)=y$
- Distance from x to decision boundary of $f_{w, b}$ is γ

Say $f_{w, b}$ achieves margin γ on dataset \mathcal{S} if it achieves margin at least γ on every example $(x, y) \in \overline{\mathcal{S}}$

- l.e., γ is "worst" margin achieved on a training example

How to find linear classifier $f_{w, b}$ with largest margin on dataset \mathcal{S} ?
Let $z \in \operatorname{span}\{w\} \cap H_{w, b}$
For $(x, y) \in \mathcal{S}$ satisfying $y\left(w^{\top} x+b\right)=1$, let \tilde{x} be orthoprojection of x to $\operatorname{span}\{w\}$, so

$$
w^{\top} x+b=w^{\top} \tilde{x}+b=y
$$

Therefore

$$
\left|w^{\top}(\tilde{x}-z)\right|=
$$

So distance from x to $H_{w, b}$ is

How to find linear classifier $f_{w, b}$ with largest margin on dataset δ ?
Solution: find $(w, b) \in \mathbb{R}^{d} \times \mathbb{R}$ that satisfy

$$
\min _{(x, y) \in \mathcal{S}} y\left(w^{\top} x+b\right)=1
$$

and that maximizes $\frac{1}{\|w\|}$

Support Vector Machine (SVM) optimization problem

$$
\begin{aligned}
\min _{(w, b) \in \mathbb{R}^{d} \times \mathbb{R}} & \frac{1}{2}\|w\|^{2} \\
\text { s.t. } & y\left(w^{\top} x+b\right) \geq 1 \quad \text { for all }(x, y) \in \mathcal{S}
\end{aligned}
$$

(Recall, labels are from $\{-1,1\}$ instead of $\{0,1\}$ here)

Examples $(x, y) \in \mathcal{S}$ for which $y\left(w^{\top} x+b\right)=1$ are called support vectors

Iris dataset, treating versicolor and virginica as a single class, using features

$$
x_{1}=\text { sepal width }, \quad x_{2}=\text { petal } \text { width }
$$

Soft-margin SVM: for datasets that are not linearly separable

$$
\min _{(w, b) \in \mathbb{R}^{d} \times \mathbb{R}} \frac{1}{2}\|w\|^{2}+C \sum_{(x, y) \in S}\left[1-y\left(w^{\top} x+b\right)\right]_{+}
$$

where $[z]_{+}=\max \{0, z\}$ (and $C>0$ is hyperparameter)

Term in summation corresponding to $(x, y) \in \mathcal{S}$:

- Zero if $y\left(w^{\top} x+b\right) \geq 1$
- Otherwise, proportional to distance that x must be moved in order to satisfy $y\left(w^{\top} x+b\right)=1$

Synthetic example with normal feature vectors

- Two classes; class 0: $\mathrm{N}((0,0), I)$, class 1: $\mathrm{N}((2,2), I)$
- 200 training data from each class
- Solved soft-margin SVM problem with $C=10$ to obtain (w, b)

